Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(22): e202403022, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485698

RESUMO

Integrating solar energy into rechargeable battery systems represents a significant advancement towards sustainable energy storage solutions. Herein, we propose a win-win solution to reduce the shuttle effect of polysulfide and improve the photocorrosion stability of CdS, thereby enhancing the energy conversion efficiency of rGO/CdS-based photorechargeable integrated lithium-sulfur batteries (PRLSBs). Experimental results show that CdS can effectively anchor polysulfide under sunlight irradiation for 20 minutes. Under a high current density (1 C), the discharge-specific capacity of the PRLSBs increased to 971.30 mAh g-1, which is 113.3 % enhancement compared to that of under dark condition (857.49 mAh g-1). Remarkably, without an electrical power supply, the PRLSBs can maintain a 21 hours discharge process following merely 1.5 hours of light irradiation, achieving a breakthrough solar-to-electrical energy conversion efficiency of up to 5.04 %. Ex situ X-ray photoelectron spectroscopy (XPS) and in situ Raman analysis corroborate the effectiveness of this complementary weakness approach in bolstering redox kinetics and curtailing polysulfide dissolution in PRLSBs. This work showcases a feasible strategy to develop PRLSBs with potential dual-functional metal sulfide photoelectrodes, which will be of great interest in future-oriented off-grid photocell systems.

2.
Adv Mater ; : e2313513, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461147

RESUMO

The development of high-density and closely spaced frustrated Lewis pairs (FLPs) is crucial for enhancing catalyst activity and accelerating reaction rates. However, constructing efficient FLPs by breaking classical Lewis bonds poses a significant challenge. Here, this work has made a pivotal discovery regarding the Jahn-Teller effect during the formation of grain boundaries in carbon-encapsulated Ni/NiOx (Ni/NiOx @C). This effect facilitates the formation of high-density O (VO ) and Ni (VNi ) vacancy sites with different charge polarities, specifically FLP-VO -C basic sites and FLP-VNi -C acidic sites. The synergistic interaction between FLP-VO -C and FLP-VNi -C sites not only reduces energy barriers for water adsorption and splitting, but also induces a strong photothermal effect. This mutually reinforcing effect contributes to the exceptional performance of Ni/NiOx @C as a cocatalyst in photothermal-assisted photocatalytic hydrogen production. Notably, the Ni/NiOx @C/g-C3 N4 (NOCC) composite photocatalyst exhibits remarkable hydrogen production activity with a rate of 10.7 mmol g-1 h-1 , surpassing that of the Pt cocatalyst by 1.76 times. Moreover, the NOCC achieves an impressive apparent quantum yield of 40.78% at a wavelength of 380 nm. This work paves the way for designing novel defect-state multiphase cocatalysts with high-density and adjacent FLP sites, which hold promise for enhancing various catalytic reactions.

3.
Small ; 20(9): e2305906, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37857591

RESUMO

Replacing traditional oxygen evoltion reaction (OER) with biomass oxidation reaction (BOR) is an advantageous alternative choice to obtain green hydrogen energy from electrocatalytic water splitting. Herein, a novel of extremely homogeneous Ni3 S2 nanosheets covered TiO2 nanorod arrays are in situ growth on conductive Ni foam (Ni/TiO2 @Ni3 S2 ). The Ni/TiO2 @Ni3 S2 electrode exhibits excellent electrocatalytic activity and long-term stability for both BOR and hydrogen evolution reaction (HER). Especially, taking glucose as a typical biomass, the average hydrogen production rate of the HER-glucose oxidation reaction (GOR) two-electrode system reached 984.74 µmol h-1 , about 2.7 times higher than that of in a common HER//OER two-electrode water splitting system (365.50 µmol h-1 ). The calculated power energy saving efficiency of the GOR//HER system is about 13% less than that of the OER//HER system. Meanwhile, the corresponding selectivity of the value-added formic acid produced by GOR reaches about 80%. Moreover, the Ni/TiO2 @Ni3 S2 electrode also exhibits excellent electrocatalytic activity on a diverse range of typical biomass intermediates, such as urea, sucrose, fructose, furfuryl alcohol (FFA), 5-hydroxymethylfurfural (HMF), and alcohol (EtOH). These results show that Ni/TiO2 @Ni3 S2 has great potential in electrocatalysis, especially in replacing OER reaction with BOR reaction and promoting the sustainable development of hydrogen production.

4.
Small Methods ; 5(11): e2100878, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34927978

RESUMO

The rational design and construction of cost-effective nickel-based phosphide or sulfide (photo)electrocatalysts for hydrogen production from water splitting has sparked a huge investigation surge in recent years. Whereas, nickel phosphides (Nix Py ) possess more than ten stoichiometric compositions with different crystalline. Constructing Nix Py with well crystalline and revealing their intrinsic catalytic mechanism at atomic/molecular levels remains a great challenge. Herein, an easy-to-follow phase-controllable phosphating strategy is first proposed to prepare well crystalline Nix Py (Ni3 P and Ni12 P5 ) modified CdS@Ni3 S2 heterojunction electrocatalysts. It is found that Ni3 P modified CdS@Ni3 S2 (CdS@Ni3 S2 /Ni3 P) exhibits remarkable stability and bifunctional electrocatalytic activities in both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory results suggest that P-Ni sites and P sites in CdS@Ni3 S2 /Ni3 P, respectively, serve as OER and HER active sites during electrocatalytic water splitting processes. Moreover, benefiting from the advantageous photocatalyst@electrocatalyst core@shell structure, CdS@Ni3 S2 /Ni3 P delivers an advantaged photoassisted electrocatalytic water splitting property. The champion electrical to hydrogen and solar to hydrogen energy conversion efficiencies of CdS@Ni3 S2 /Ni3 P, respectively, reach 93.35% and 4.65%. This work will provide a general guidance for synergistically using solar energy and electric energy for large-scale H2 production from water splitting.

5.
ACS Appl Mater Interfaces ; 13(31): 37299-37307, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34324293

RESUMO

A copper (Cu) material is catalytically active for formaldehyde (HCHO) dehydrogenation to produce H2, but the unsatisfactory efficiency and easy corrosion hinder its practical application. Alloying with other metals and coating a carbon layer outside are recognized as effective strategies to improve the catalytic activity and the long-term durability of nonprecious metal catalysts. Here, highly dispersed CuNi alloy-carbon layer core-shell nanoparticles (CuNi@C) have been developed as a robust catalyst for efficient H2 generation from HCHO aqueous solution at room temperature. Under the optimized reaction conditions, the CuNi@C catalyst exhibits a H2 evolution rate of 110.98 mmol·h-1·g-1, which is 1.5 and 4.9 times higher than those of Cu@C and Ni@C, respectively, which ranks top among the reported nonprecious metal catalysts for catalytic HCHO reforming at room temperature to date. Furthermore, CuNi@C also displays excellent stability toward the catalytic HCHO reforming into H2 in tap water owing to the well-constructed carbon sheath protecting CuNi nanocrystals from oxidation in an alkaline medium. Combined with density functional theory calculations, the superior catalytic efficiency of CuNi@C for H2 generation results from the synergistic contribution between the massive active species from HCHO decomposition on the Cu sites and the remarkable H2 evolution activity on Ni sites. The improved performance of CuNi@C highlights the enormous potential of advancing noble-metal-free nanoalloys as cost-effective and recyclable catalysts for energy recovery from industrial HCHO wastewater.

6.
Polymers (Basel) ; 13(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34279340

RESUMO

Currently, the degradation of organic pollutants in wastewater by photocatalytic technology has attracted great attention. In this study, a new type of 3D printing material with photocatalytic activity was first prepared to print a water treatment equipment, and then a layer of silver-loaded TiO2 was coated on the equipment to further improve the catalytic degradation performance. The composite filaments with a diameter of 1.75 ± 0.05 mm were prepared by a melt blending method, which contained 10 wt% of modified TiO2 and 90 wt% of PLA. The silver-loaded TiO2 was uniformly coated on the equipment through a UV-curing method. The final results showed that those modified particles were uniformly dispersed in the PLA matrix. The stable printing composite filaments could be produced when 10 wt% TiO2 was added to the PLA matrix. Moreover, the photocatalytic degradation performance could be effectively improved after 5 wt% of silver loading was added. This novel facility showed good degradability of organic compounds in wastewater and bactericidal effect, which had potential applications for the drinking water treatment in the future.

7.
Chemosphere ; 239: 124831, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31526986

RESUMO

The overuse of antibiotics, including tetracycline hydrochloride (TC), seriously threatens human health and ecosystems. In this work, magnetic carbon-coated cobalt oxide nanoparticles (CoO@C) were prepared by one-step annealing method and used as an adsorbent for efficient removal of TC from aqueous solution. The characteristic of the materials was studied by SEM, TEM, and XRD, revealing CoO nanoparticles (≤10 nm) were coated by carbon layer. Several influencial parameters, such as annealing temperature and pH on adsorption of TC, were explored, and found that the maximum adsorption capacity of CoO@C on TC reached as high as 769.43 mg g-1. Furthermore, CoO@C displayed excellent stability and reusability. After four repeated use of the adsorbent, the adsorption capacity still remained at 90% of the initial capacity. The pseudo-second order model and Temkin model proved that it was an exothermic chemical adsorption process. Furthermore, after analysis of FT-IR, Zeta-potential, XPS, the positive charge on the surface of CoO@C forms a strong electrostatic interaction with TC, and in addition, a surface bond is formed between the adsorbent and the TC molecule. This work provides a novel and efficient adsorbent for the purification of TC-containing wastewater.


Assuntos
Cobalto/química , Nanopartículas/química , Óxidos/química , Tetraciclina/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Antibacterianos/química , Carbono , Magnetismo , Reciclagem , Tetraciclina/isolamento & purificação , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos
8.
ChemSusChem ; 12(22): 4996-5006, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31529775

RESUMO

Considerable research efforts have been devoted to develop noble-metal-free cocatalysts coupled with semiconductors for highly efficient photocatalytic H2 evolution as part of the challenge toward solar-to-fuel conversion. Herein, a new cocatalyst with excellent activity in the electrocatalytic H2 evolution reaction (HER) that is based on Co sheathed in N-doped graphitic carbon nanosheets (Co@NC) was fabricated by a surfactant-assisted pyrolysis approach and then coupled with g-C3 N4 nanosheets to construct a 2 D-2 D g-C3 N4 /Co@NC composite photocatalyst by a simple grinding method. As a result of advantages in effective electrocatalytic HER activity, suitable electronic band structure, and rapid interfacial charge transfer brought about by the 2 D-2 D spatial configuration, the g-C3 N4 /Co@NC photocatalyst that contained 4 wt % Co@NC presented a high photocatalytic H2 generation rate of 15.67 µmol h-1 under visible-light irradiation (λ≥400 nm), which was 104.5 times higher than that of pristine g-C3 N4 . The optimum g-C3 N4 /Co@NC photocatalyst showed a high apparent quantum efficiency of 10.82 % at λ=400 nm.

9.
ACS Appl Mater Interfaces ; 11(4): 3897-3908, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30628439

RESUMO

The emerging ubiquitous flexible/wearable electronics are in high demand for compatible flexible/high-energy rechargeable batteries, which set a collaborative goal to promote the electrochemical performance and the mechanical strength of the fundamental flexible electrodes involved. Herein, freestanding flexible electrode of Si/graphene films is proposed, which is fabricated through a scalable, zinc-driven redox layer-by-layer assembly process. In the hybrid films, silicon nanoparticles are intimately encapsulated and confined in multilayered reduced graphene oxide (rGO) nanosheet films. The designed monolithic rGO/Si film possesses several structural benefits such as high mechanical integrity and three-dimensional conductive framework for accessible charge transport and Li+ diffusion upon cycling. When adopted as binder-free electrode in half-cells, the optimized hybrid rGO/Si film delivers high gravimetric capacity (981 mA h g-1 at 200 mA g-1 with respect to the total weight of the electrode) and exceptional cycling stability (0.057% decay per cycle over 1000 cycles at 1000 mA g-1). Besides, the binder-free rGO/Si film anode is further combined with a commercial LiCoO2 foil cathode for completely flexible full cell/battery, which exhibits excellent cycling performance and a high capacity retention of over 95% after 30 cycles under continuous bending. This solution-processable, elaborately engineered, and robust Si/graphene films will further harness the potential of silicon-carbon composites for advanced flexible/wearable energy storage.

10.
Dalton Trans ; 44(4): 1680-9, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25438161

RESUMO

In this work, amorphous Co3O4 modified CdS nanorods were synthesized by a two-step solvothermal/hydrothermal method, and characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy, UV-visible spectroscopy, nitrogen absorption and X-ray photoelectron spectroscopy. The photocatalytic performance of the as-synthesized Co3O4-CdS nanorods was evaluated through H2 generation from an aqueous solution containing sulfide and sulfite under visible light (λ ≥ 420 nm). The results showed that the photocatalytic activity of CdS nanorods for H2 evolution could be significantly enhanced by loading the amorphous Co3O4. The optimal Co3O4 loading was found to be approximately 3.0 mol%. The as-prepared CdS nanorods with 3 mol% Co3O4 exhibited the highest photocatalytic activity for H2 evolution under visible light irradiation, 236 µmol g(-1) h(-1), which is 33-fold higher than that of the pristine CdS nanorods. Furthermore, the co-loading of 1 wt% Pt can lead to another three times enhancement in the photocatalytic H2-production activity. The mechanism for the enhanced H2-production performance of Co3O4-CdS nanorods was discussed. The excellent performance of Co3O4-CdS nanorods is mainly ascribed to the loading of amorphous Co3O4 onto the surface of CdS nanorods, which could promote the separation of electron-hole pairs and enhance the stability of CdS nanorods due to the formation of p-n heterojunctions between the Co3O4 and CdS nanorods, thus leading to an enhanced activity for H2 generation. This work demonstrated that the loading of amorphous Co3O4 is a facile strategy to enhance the photocatalytic activity of CdS nanorods, which may provide some potential opportunities for designing other composite photocatalysts for water splitting.

11.
ACS Appl Mater Interfaces ; 6(13): 10258-64, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24919010

RESUMO

The interaction within heterogeneous nanostructures can provide a great opportunity to radically enhance their electrocatalytic properties and increase their activity and durability. Here a rational, simple, and integrated strategy is reported to construct uniform and strongly coupled metal-metal oxide-graphene nanostructure as an electrocatalyst with high performance. We first simply synthesized the interacted SnO2-prGO (protected and reduced graphene oxide) hybrid with SnO2 nanoparticles (∼4 nm) selectively anchored on the oxygenated defects of rGO using an in situ redox and hydrolysis reaction. After the deposition of Pt, uniform Pt NPs are found to contact intimately and exclusively with the SnO2 phase in the SnO2-prGO hybrid. This constructed nanostructure (Pt-SnO2-prGO) exhibits significantly improved electrocatalytic activity (2.19-fold) and durability (2.08-fold) toward methanol oxidation over that of the state-of-the-art Pt/C catalyst. The detailed explanation of the strong coupling between SnO2 and graphene as well as between Pt and SnO2 is discussed, revealing that such a process can be used to immobilize various metal catalysts on metal-oxide-decorated catalysts for realizing advanced catalytic systems with enhanced performance.

12.
Chem Commun (Camb) ; 50(9): 1070-3, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24309958

RESUMO

Novel SnO2/SiC hollow sphere nanochains were synthesized by topological morphology conversion of SnO2@C core-shell nanochains through a vapour-solid reaction. Evaluation of the SnO2/SiC HSNCs for the generation of hydrogen revealed that they exhibit excellent catalytic activity and durability.


Assuntos
Compostos Inorgânicos de Carbono/química , Hidrogênio/química , Nanoestruturas/química , Compostos de Silício/química , Compostos de Estanho/química , Catálise , Gases/química , Luz , Tamanho da Partícula
13.
J Nanosci Nanotechnol ; 13(6): 4375-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862506

RESUMO

A series of new UV-curable hybrid coatings were prepared with hyperbranched polyurethane acrylate-polyurethane diacrylate (HBPUA-PUDA) and organic SiO2 as formation, and 2-hydroxyl-2-methyl-l-phenyl-1-propanone (Darocur 1173) was used as photo-initiator. The effect of organic SiO2 content on the thermal stability and conversion of C=C bonds of the UV-cured HBPUA-PUDA/SiO2 films were evaluated using thermal gravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). The morphology of SiO2 were observed by using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and the elemental composition of SiO2 was tested by energy dispersive spectrometer (EDS). The results revealed that when organic SiO2 content was less than 30 wt%, the average particle size of SiO2 was about 95 nm and the particles were well-dispersed in the organic phase. The mechanical properties, abrasion resistance and transmittance of the films were also investigated. The results showed that with the increase of organic SiO2 content, the adhesive force and pendulum hardness were increased obviously, while the transmittance and flexibility were decreased. When the content of the organic SiO2 was 30 wt%, the film of HBPUA-PUDA/SiO2 showed the optimal comprehensive performance as follows: pendulum hardness was 0.74, transmittance was 93.1%, adhesion was 0 grade, flexibility was 2 mm, impact strength was 43 Kg x cm and mass loss of 300 cycles was 12.9 mg.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...