Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Med Virol ; 96(5): e29678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751128

RESUMO

Death due to severe influenza is usually a fatal complication of a dysregulated immune response more than the acute virulence of an infectious agent. Although spleen tyrosine kinase (SYK) as a critical immune signaling molecule and therapeutic target plays roles in airway inflammation and acute lung injury, the role of SYK in influenza virus infection is not clear. Here, we investigated the antiviral and anti-inflammatory effects of SYK inhibitor R406 on influenza infection through a coculture model of human alveolar epithelial (A549) and macrophage (THP-1) cell lines and mouse model. The results showed that R406 treatment increased the viability of A549 and decreased the pathogenicity and mortality of lethal influenza virus in mice with influenza A infection, decreased levels of intracellular signaling molecules under the condition of inflammation during influenza virus infection. Combination therapy with oseltamivir further ameliorated histopathological damage in the lungs of mice and further delayed the initial time to death compared with R406 treatment alone. This study demonstrated that phosphorylation of SYK is involved in the pathogenesis of influenza, and R406 has antiviral and anti-inflammatory effects on the treatment of the disease, which may be realized through multiple pathways, including the already reported SYK/STAT/IFNs-mediated antiviral pathway, as well as TNF-α/SYK- and SYK/Akt-based immunomodulation pathway.


Assuntos
Anti-Inflamatórios , Antivirais , Modelos Animais de Doenças , Infecções por Orthomyxoviridae , Oxazinas , Quinase Syk , Animais , Humanos , Quinase Syk/antagonistas & inibidores , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Pulmão/patologia , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Células A549 , Vírus da Influenza A/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Células THP-1 , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
Clin Immunol ; 262: 110178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460892

RESUMO

Controlling the excessive inflammatory response is one of the key ways to reduce the severity and mortality of severe influenza virus infections. RAGE is involved in inflammatory responses and acute lung injuries. Here, we investigated the role of RAGE and its potential application as a target for severe influenza treatment through serological correlation analysis for influenza patients, and treatment with the RAGE inhibitor FPS-ZM1 on A549 cells or mice with influenza A (H1N1) infection. The results showed high levels of RAGE were correlated with immunopathological injury and severity of influenza, and FPS-ZM1 treatment increased the viability of A549 cells with influenza A infection and decreased morbidity and mortality of influenza A virus infection in mice. The RAGE/NF-κb inflammatory signaling pathway is a major targeting pathway for FPS-ZM1 treatment in severe influenza. These findings provide further insights into the immune injury of severe influenza and a potential targeting candidate for the disease treatment.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Benzamidas/farmacologia
3.
Nature ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019149

RESUMO

SARS-CoV-2, the causative agent of COVID-19, emerged in December 2019. Its origins remain uncertain. It has been reported that a number of the early human cases had a history of contact with the Huanan Seafood Market. Here we present the results of surveillance for SARS-CoV-2 within the market. From January 1st 2020, after closure of the market, 923 samples were collected from the environment. From 18th January, 457 samples were collected from 18 species of animals, comprising of unsold contents of refrigerators and freezers, swabs from stray animals, and the contents of a fish tank. Using RT-qPCR, SARS-CoV-2 was detected in 73 environmental samples, but none of the animal samples. Three live viruses were successfully isolated. The viruses from the market shared nucleotide identity of 99.99% to 100% with the human isolate HCoV-19/Wuhan/IVDC-HB-01/2019. SARS-CoV-2 lineage A (8782T and 28144C) was found in an environmental sample. RNA-seq analysis of SARS-CoV-2 positive and negative environmental samples showed an abundance of different vertebrate genera at the market. In summary, this study provides information about the distribution and prevalence of SARS-CoV-2 in the Huanan Seafood Market during the early stages of the COVID-19 outbreak.

4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047339

RESUMO

Influenza virus and coronavirus, two kinds of pathogens that exist widely in nature, are common emerging pathogens that cause respiratory tract infections in humans. In December 2019, a novel coronavirus SARS-CoV-2 emerged, causing a severe respiratory infection named COVID-19 in humans, and raising a global pandemic which has persisted in the world for almost three years. Influenza virus, a seasonally circulating respiratory pathogen, has caused four global pandemics in humans since 1918 by the emergence of novel variants. Studies have shown that there are certain similarities in transmission mode and pathogenesis between influenza and COVID-19, and vaccination and antiviral drugs are considered to have positive roles as well as several limitations in the prevention and control of both diseases. Comparative understandings would be helpful to the prevention and control of these diseases. Here, we review the study progress in the etiology, pathogenesis, vaccine and antiviral drug development for the two diseases.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Infecções Respiratórias , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/prevenção & controle , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2 , Infecções Respiratórias/tratamento farmacológico , Desenvolvimento de Medicamentos
5.
Front Immunol ; 13: 1028458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275680

RESUMO

C-reactive protein (CRP) has been shown to be a potential candidate target in the immunotherapy of severe influenza A infection. However, it is unclear on the pathogenesis associated with CRP in influenza infections. Here, we used influenza A H1N1 CA04 to infect human CRP transgenic mice (KI), CRP knockout mice (KO), and wild-type mice (WT), respectively, and compared the viral pathogenicity and associated immune response in those mice. The results showed that CA04 infection resulted in 100%, 80%, and 60% death in KO, KI, and WT mice, respectively. Compared to WT mice, CA04 infection resulted in higher TCID50 in lungs on day 3 after infection but lowered HI antibody titers in sera of survivors on day 21 after infection in KI mice. ELISA assay showed that IFN-γ concentration was significantly increased in sera of WT, KI, or KO mice on day 7 after infection, and IL-17 was remarkably increased in sera of WT mice but decreased in sera of KI mice while no significant change in sera of KO mice on day 3 or 7 after infection. Quantitative RT-PCR showed that the relative expression levels of immune checkpoint CTLA-4, LAIR-1, GITR, BTLA, TIM-3, or PD-1 mRNA in the lung presented decreased levels on day 3 or 7 after infection in KI or KO mice. The correlation analysis showed that mRNA expression levels of the 6 molecules positively correlated with viral TICD50 in WT mice but negatively correlated with viral TCID50 in KI or KO mice. However, only LAIR-1 presented a significant correlation in each lung tissue of WT, KI, or KO mice with CA07 infection statistically. IHC results showed that LAIR-1 positive cells could be found in WT, KO, or KI mice lung tissues with CA04 infection, and the positive cells were mainly distributed in an inflammatory dense area. Our results suggested that deficiency of CRP or human CRP transgenic treatment aggravates influenza A virus infection in mice. CRP is a double sword in immune regulation of influenza infection in which IL-17 and immune checkpoint may be involved.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Camundongos , Animais , Proteína C-Reativa , Interleucina-17 , Receptor Celular 2 do Vírus da Hepatite A , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1 , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro
6.
Emerg Infect Dis ; 28(7): 1332-1344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35476714

RESUMO

The recent rise in the frequency of influenza A(H5N6) infections in China has raised serious concerns about whether the risk for human infection has increased. We surveyed epidemiologic, clinical, and genetic data of human infections with A(H5N6) viruses. Severe disease occurred in 93.8% of cases, and the fatality rate was 55.4%. Median patient age was 51 years. Most H5N6 hemagglutinin (HA) genes in human isolates in 2021 originated from subclade 2.3.4.4b; we estimated the time to most recent common ancestor as June 16, 2020. A total of 13 genotypes with HA genes from multiple subclades in clade 2.3.4.4 were identified in human isolates. Of note, 4 new genotypes detected in 2021 were the major causes of increased H5N6 virus infections. Mammalian-adapted mutations were found in HA and internal genes. Although we found no evidence of human-to-human transmission, continuous evolution of H5N6 viruses may increase the risk for human infections.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , China/epidemiologia , Humanos , Mamíferos , Pessoa de Meia-Idade , Filogenia , Vírus Reordenados/genética
7.
Front Public Health ; 10: 825645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284384

RESUMO

Influenza-like illness (ILI) is one of the most important public health problems globally, causing an enormous disease burden. Influenza infections are the most common cause of ILI. Bacterial and virus co-infection is common yet the data of co-infection with influenza A and B viruses are scarce. To identify the epidemiological patterns of and co-infection of influenza A and B in Anhui province, China, we analyzed the surveillance data of 5 years from 2009 to 2014 collected by the Chinese National influenzas network. The results showed that the weekly ratio of ILI was 3.96 ± 1.9% (95% CI 3.73-4.2%) in outpatients and the highest affected population was children under 5 years old. The epidemic of influenza viruses was highest during 2009-2010. For the other 4 surveillance years, school-aged people (5-14 years) were the most highly affected population. Influenza B and H3N2 viruses were more prevalent than H1N1pdm09 virus after 2010. In addition, a significant co-circulation of influenza A (H1N1pdm09 and H3N2) and influenza B virus was detected with 0.057% PCR positive rate during 2009-2014 in Eastern China, yet isolated only in pediatric patients. Our data reveals school-aged population would be the main vulnerable population and a distinct seasonality for influenza. In addition, the co-infection of influenza A and B were found in Anhui Province, China. Ongoing surveillance is critical to understand the seasonality variation and make evidence-based vaccination recommendations. Information on the epidemiological patterns and co-infections of influenza A and B can help us to implement different strategies for selecting vaccine formulations and monitoring new emerging influenza strains. In addition, the identification of the susceptible population can help us to develop more precise protection measures.


Assuntos
Coinfecção , Vacinas contra Influenza , Influenza Humana , Criança , Pré-Escolar , China/epidemiologia , Coinfecção/epidemiologia , Humanos , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Influenza Humana/epidemiologia
8.
Infect Dis Immun ; 2(3): 193-199, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37520106

RESUMO

Background: Many issues, such as severity assessment and antibody responses, remain to be answered eagerly for evaluation and understanding of COVID-19. Immune lesion is one of key pathogenesis of the disease. It would be helpful to understand the disease if an investigation on antigenemia and association was conducted in the patients with SARS-CoV-2 infection. Methods: A total of 156 patients admitted to the First People's Hospital of Hefei or Anhui Provincial Hospital on January to February 2020 were involved in this study. SARS-CoV-2 nucleocapsid (NP) antigen, specific IgM/IgG antibodies, and RNA were detected in sequential sera from three COVID-19 patients, and additional 153 COVID-19 patients by means of NP-antigen capture enzyme-linked immunosorbent assay, colloidal gold quick diagnosis, and real-time RT-PCR, respectively. The clinical types of COVID-19 patients were classified into asymptomatic, mild, moderate, severe, and critical, following on the Chinese guideline of COVID-19 diagnosis and treatment. The demographic and clinical data of patients were obtained for comparable analysis. Results: NP antigen was detected in 5 of 20 sequential sera collected from three COVID-19 patients with typically clinical symptoms, and 60.13% (92/153) expanded samples collected within 17 days after illness onset. No SARS-CoV-2 RNA segment was detected in these sera. The NP positive proportion reached a peak (84.85%, 28/33) on 6 to 8 days after illness onset. Both NP concentration and positive proportion were increased with the increase of clinical severity of COVID-19. Compared to NP negative patients, NP positive patients had older age [years, medians (interquartile ranges (IQR)), 49 (6) vs. 31 (11)], lower positive proportion of NP specific IgM [27.17% (25/92) vs. 59.02% (36/61)], and IgG [21.74% (20/92) vs. 59.02% (36/61)] antibodies, and longer duration [days, medians (IQR), 24 (10) vs. 21 (13)] from illness to recovery. Conclusions: SARS-CoV-2 NP antigenemia occurred in COVID-19, and presented highly prevalent at early stage of the disease. The antigenemia was related to clinical severity of the disease, and may be responsible for the delay of detectable SARS-Cov-2 IgM.

9.
Sci Rep ; 11(1): 16293, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381119

RESUMO

That the high frequency and good replication capacity of strains with reduced susceptibility to neuraminidase inhibitors (NAIs) in highly pathogenic avian influenza H7N9 (HPAI H7N9) virus made it a significance to further study its drug resistance. HPAI H7N9 viruses bearing NA I222L or E119V substitution and two mutations of I222L-E119V as well as their NAIs-sensitive counterpart were generated by reverse genetics for NA inhibition test and replication capability evaluation in vitro. The attenuated H7N9/PR8 recombinant viruses were developed to study the pathogenicity and drug resistance brought by the above substitutions to mice. The IC50 fold change of oseltamivir to HPAI H7N9 with NA222L-119V is 306.34 times than that of its susceptible strain, and 3.5 times than the E119V mutant virus. HPAI H7N9 bearing NA222L-119V had good replication ability with peak value of more than 6log10 TCID50/ml in MDCK cells. H7N9/PR8 virus bearing NA222L-119V substitutions leaded to diffuse pneumonia, significant weight loss and fatality in mice. NA E119V made H7N9/PR8 virus resistant to oseltamivir, and I222L-E119V had synergistic resistance to oseltamivir in mice. Due to the good fitness of drug resistant strains of HPAI H7N9 virus, it is necessary to strengthen drug resistance surveillance and new drug research.


Assuntos
Substituição de Aminoácidos/genética , Farmacorresistência Viral/genética , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Subtipo H7N9 do Vírus da Influenza A/genética , Neuraminidase/genética , Oseltamivir/farmacologia , Substituição de Aminoácidos/efeitos dos fármacos , Animais , Antivirais/farmacologia , Aves/virologia , Linhagem Celular , Cães , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Humanos , Influenza Aviária/tratamento farmacológico , Influenza Aviária/virologia , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
10.
Influenza Other Respir Viruses ; 15(2): 262-269, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32978902

RESUMO

BACKGROUND: In mainland China, seasonal influenza disease burden at community level is unknown. The incidence rate of influenza virus infections in the community is difficult to determine due to the lack of well-defined catchment populations of influenza-like illness surveillance sentinel hospitals. OBJECTIVES: We established a community-based cohort to estimate incidence of seasonal influenza infections indicated by serology and protection conferred by antibody titers against influenza infections during 2018-2019 influenza season in northern China. METHODS: We recruited participants in November 2018 and conducted follow-up in May 2019 with collection of sera every survey. Seasonal influenza infections were indicated by a 4-fold or greater increase of hemagglutination inhibition (HI) antibody between paired sera. RESULTS: Two hundred and three children 5-17 years of age and 413 adults 18-59 years of age were followed up and provided paired sera. The overall incidence of seasonal influenza infection and incidence of A(H3N2) infection in children (31% and 17%, respectively) were significantly higher than those in adults (21% and 10%, respectively). The incidences of A(H1N1)pdm09 infection in children and adults were both about 10%, while the incidences of B/Victoria and/Yamagata infection in children and adults were from 2% to 4%. HI titers of 1:40 against A(H1N1)pdm09 and A(H3N2) viruses were associated with 63% and 75% protection against infections with the two subtypes, respectively. CONCLUSIONS: In the community, we identified considerable incidence of seasonal influenza infections. A HI titer of 1:40 could be sufficient to provide 50% protection against influenza A virus infections indicated by serology.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Anticorpos Antivirais , Criança , China/epidemiologia , Humanos , Incidência , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/epidemiologia , Estações do Ano
11.
Emerg Microbes Infect ; 9(1): 1853-1863, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32746754

RESUMO

Influenza B virus (IBV) is one of the most important human respiratory viruses: it causes approximately one-third of the global influenza-related disease burden each year. However, compared with the several pathogenicity-related molecular markers that have been identified for influenza A virus (IAV), little is known about potential IBV pathogenicity-related markers. Here, although the IBV strain B/Anhui-Tunxi/1528/2014 (AH1528/14) exhibited a more efficient replication ability in vitro and higher pathogenicity in vivo compared with IBV strain B/Anhui-Baohe/127/2015 (AH127/15), only three amino acids differences (HAA390E, NAN342D and PB1V212I) were observed among their full genomes. The contributions of each amino acid difference to the virus pathogenicity were further investigated. Compared with the wild type IBV virus rAH127, the recombinant virus harbouring a single substitution of HAA390E had a similar phenotype, whereas the recombinant virus harbouring PB1V212I replicated to a moderately higher titre in both MDCK cells and in mice. Notably, the virus harbouring NAN342D showed significantly better growth properties in MDCK cells and higher fatality rates in mice. In addition, the presence of NAN342D dramatically enhanced the viral neuraminidase activity. In conclusion, our study identified a novel IBV molecular marker, NAN342D, that could significantly increase the virulence of IBV in mice.


Assuntos
Vírus da Influenza B/patogenicidade , Neuraminidase/genética , Infecções por Orthomyxoviridae/patologia , Vírus Reordenados/patogenicidade , Proteínas Virais/genética , Sequência de Aminoácidos/genética , Animais , Linhagem Celular , Cães , Feminino , Genoma Viral/genética , Células HEK293 , Humanos , Vírus da Influenza B/genética , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Replicação Viral/genética
12.
Clin Infect Dis ; 71(15): 756-761, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32161968

RESUMO

BACKGROUND: A novel coronavirus (COVID-19) has raised world concern since it emerged in Wuhan, China in December 2019. The infection may result in severe pneumonia with clusters of illness onsets. Its impacts on public health make it paramount to clarify the clinical features with other pneumonias. METHODS: Nineteen COVID-19 and 15 other patients with pneumonia (non-COVID-19) in areas outside of Hubei were involved in this study. Both COVID-19 and non-COVID-19 patients were confirmed to be infected using throat swabs and/or sputa with/without COVID-2019 by real-time RT-PCR. We analyzed the demographic, epidemiological, clinical, and radiological features from those patients, and compared the differences between COVID-19 and non-COVID-19. RESULTS: All patients had a history of exposure to confirmed cases of COVID-19 or travel to Hubei before illness. The median (IQR) duration was 8 (6-11) and 5 (4-11) days from exposure to onset in COVID-19 and non-COVID-19 cases, respectively. The clinical symptoms were similar between COVID-19 and non-COVID-19. The most common symptoms were fever and cough. Fifteen (78.95%) COVID-19 but 4 (26.67%) non-COVID-19 patients had bilateral involvement while 17 COVID-19 patients (89.47%) but 1 non-COVID-19 patient (6.67%) had multiple mottling and ground-glass opacity on chest CT images. Compared with non-COVID-19, COVID-19 presents remarkably more abnormal laboratory tests, including AST, ALT, γ-GT, LDH, and α-HBDH. CONCLUSIONS: The COVID-19 infection has onsets similar to other pneumonias. CT scan may be a reliable test for screening COVID-19 cases. Liver function damage is more frequent in COVID-19 than non-COVID-19 patients. LDH and α-HBDH may be considerable markers for evaluation of COVID-19.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Pneumonia/epidemiologia , Pneumonia/virologia , Adulto , Betacoronavirus/patogenicidade , COVID-19 , China/epidemiologia , Tosse/epidemiologia , Tosse/virologia , Feminino , Febre/epidemiologia , Febre/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2 , Tomografia Computadorizada por Raios X/métodos , Viagem
13.
Emerg Microbes Infect ; 8(1): 989-999, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31267843

RESUMO

It has recently been proposed that the Eurasian avian-like H1N1 (EA H1N1) swine influenza virus (SIV) is one of the most likely zoonotic viruses to cause the next influenza pandemic. Two main genotypes EA H1N1 viruses have been recognized to be infected humans in China. Our study finds that one of the genotypes JS1-like viruses are avirulent in mice. However, the other are HuN-like viruses and are virulent in mice. The molecular mechanism underlying this difference shows that the NP gene determines the virulence of the EA H1N1 viruses in mice. In addition, a single substitution, Q357K, in the NP protein of the EA H1N1 viruses alters the virulence phenotype. This substitution is a typical human signature marker, which is prevalent in human viruses but rarely detected in avian influenza viruses. The NP-Q357K substitution is readily to be occurred when avian influenza viruses circulate in pigs, and may facilitate their infection of humans and allow viruses also carrying NP-357K to circulate in humans. Our study demonstrates that the substitution Q357K in the NP protein plays a key role in the virulence phenotype of EA H1N1 SIVs, and provides important information for evaluating the pandemic risk of field influenza strains.


Assuntos
Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/virologia , Mutação de Sentido Incorreto , Infecções por Orthomyxoviridae/veterinária , Proteínas de Ligação a RNA/genética , Doenças dos Suínos/virologia , Proteínas do Core Viral/genética , Animais , China , Feminino , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae/virologia , Filogenia , Proteínas de Ligação a RNA/metabolismo , Suínos , Proteínas do Core Viral/metabolismo , Virulência , Replicação Viral
14.
J Infect ; 79(1): 49-55, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31100362

RESUMO

OBJECTIVES: To identify human-to-human transmission of H7N9 avian influenza virus, we investigated a hospital cluster combined with family cluster in this study. METHODS: We obtained and analyzed clinical, epidemiological and virological data from the three patients. RT-PCR, viral culture and sequencing were conducted for determination of causative pathogen. RESULTS: The index case presented developed pneumonia with fever after exposure to chicken in a poultry farm. Case A presented pneumonia with high fever on day 3 after she shared a hospital room with the index case. Case B, the father of the index case, presented pneumonia with high fever on day 15 after he took care of the index case. H7N9 virus circulated in the local farm to which the index case was exposed. Full genomic sequence of virus showed 99.8-100% identity shared between the index case and case A or case B. Compared to the earliest virus of Anhui, a total of 29 amino acid variation sites were observed in the 8 segments. CONCLUSIONS: A hospital cluster combined with family cluster of H7N9 avian influenza infection was identified. Air transmission resulted in the hospital cluster possibly. A poultry farm was the initially infectious source of the cluster.


Assuntos
Infecção Hospitalar/epidemiologia , Transmissão de Doença Infecciosa , Saúde da Família , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/virologia , Adulto , Animais , Galinhas , China/epidemiologia , Análise por Conglomerados , Infecção Hospitalar/transmissão , Exposição Ambiental , Feminino , Humanos , Subtipo H7N9 do Vírus da Influenza A/classificação , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/transmissão , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Cultura de Vírus
15.
Biosaf Health ; 1(3): 150-154, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32501448

RESUMO

Here, we report the identification of Histoplasma causing an unexplained disease cluster in Matthews Ridge, Guyana. In March 2019, 14 employees of Chongqing Bosai Mining Company, China, working in a manganese mining of Guyana, had unexplained fever, and two of them died. We obtained lung and brain tissues as well as the blood samples from the two deceased cases (patient No. 1 and 2), and bronchoscopy lavages and cerebrospinal fluid samples from one severe case (patient No. 3), respectively. All samples were tested by pathological examination, high-throughput sequencing, and real-time PCR. Pathological detection showed the presence of spore-like structures in the lung tissue of patient No. 1, indicating a fungal infection in this patient. Nanopore sequencing identified the existing of H. capsulatum in the lung tissue sample within 13 h. Next-generation sequencing identified specific fragments of H. capsulatum in all of the samples tested (lung, brain and blood serum from the deceased cases, and plasma from the severe case). Real-time PCR assays did not reveal any viral infection related to transmission from bat feces. We conclude that H. capsulatum was the causative pathogen of this disease cluster based on epidemiologic, clinical, pathological and nucleic acid evidence.

16.
Sci Rep ; 8(1): 15282, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327485

RESUMO

We compared complete genome sequences of two strains of an avian influenza A (H5N6) virus isolated from a patient in Anhui Province with those of other strains from GenBank and Global initiative on sharing all influenza data (GISAID). The HA gene of the isolated virus shared homology with that of A/chicken/Zhejiang/727155/2014 (H5N6) at the level of similarity of 98%. The six internal genes of the Anhui strains were close to those of H9N2 viruses from Zhejiang, Shandong, and Guangdong provinces, with a similarity of 99%. In addition, the similarity between the internal antigens (NP and MP) of the isolated H5N6 virus and H7N9 and H10N8 viruses was 99%. Based on the data of phylogenetic analysis, the H5N6 influenza virus isolated in Anhui Province belonged to clade 2.3.4.4. The virus was shown to have molecular characteristics of highly pathogenic avian influenza viruses, including eight glycosylation sites and an amino acid sequence of the HA protein cleavage site, PLRERRRKKR/GLF, containing multiple basic amino acids. Additionally, the stalk domain of the NA protein was found to have a deletion in NA stalk region (11 amino acids in N6, positions 58-68). Our study demonstrated that the H5N6 virus from Anhui Province represented a triple-reassortant virus and could be highly pathogenic to humans. The prevalence of this virus should be closely monitored.


Assuntos
Vírus da Influenza A/genética , Influenza Aviária/virologia , Influenza Humana/virologia , Vírus Reordenados/genética , Idoso , Animais , Galinhas , China/epidemiologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Neuraminidase/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Análise de Sequência de DNA , Proteínas Virais/genética , Virulência , Fatores de Virulência/genética
18.
Emerg Microbes Infect ; 7(1): 75, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29717109

RESUMO

Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) have become predominant in pig populations in China and have recently been reported to have the most potential to raise the next pandemic in humans. The mutation D701N in the PB2 protein, which accounts for 31% of H1N1 SIVs, has previously been shown to contribute to the adaptation of the highly pathogenic H5N1 or H7N7 avian influenza viruses in mammals. However, little is known of the effects of this substitution on the EA H1N1 viruses. Herein, we investigated the contributions of 701N in the PB2 protein to an EA H1N1 SIV (A/Hunan/42443/2015(H1N1), HuN EA-H1N1), which had 701D in the PB2 protein. Our results found that viral polymerase activity, viral replication, and pathogenicity in mice were indeed enhanced due to the introduction of 701N into the PB2 protein, and the increased viral growth was partly mediated by the host factor importin-α7. Thus, substantial attention should be paid to the D701N mutation in pig populations.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/virologia , Infecções por Orthomyxoviridae/veterinária , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Doenças dos Suínos/virologia , Proteínas Virais/química , Proteínas Virais/genética , Replicação Viral , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Aviária/virologia , Influenza Humana/mortalidade , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Aves Domésticas , RNA Polimerase Dependente de RNA/metabolismo , Suínos , Proteínas Virais/metabolismo , Virulência
19.
Cell Rep ; 23(3): 909-917, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669294

RESUMO

The 2016-2017 epidemic of influenza A (H7N9) virus in China prompted concern that a genetic change may underlie increased virulence. Based on an evolutionary analysis of H7N9 viruses from all five outbreak waves, we find that additional subclades of the H7 and N9 genes have emerged. Our analysis indicates that H7N9 viruses inherited NP genes from co-circulating H7N9 instead of H9N2 viruses. Genotypic diversity among H7N9 viruses increased following wave I, peaked during wave III, and rapidly deceased thereafter with minimal diversity in wave V, suggesting that the viruses entered a relatively stable evolutionary stage. The ZJ11 genotype caused the majority of human infections in wave V. We suggest that the largest outbreak of wave V may be due to a constellation of genes rather than a single mutation. Therefore, continuous surveillance is necessary to minimize the threat of H7N9 viruses.


Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/patologia , Substituição de Aminoácidos , Antígenos/genética , Antígenos/imunologia , Antígenos/metabolismo , China/epidemiologia , Surtos de Doenças , Evolução Molecular , Genótipo , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/virologia , Proteínas do Nucleocapsídeo , Filogenia , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/genética , RNA Polimerase Dependente de RNA/classificação , RNA Polimerase Dependente de RNA/genética , Proteínas do Core Viral/classificação , Proteínas do Core Viral/genética , Proteínas Virais/classificação , Proteínas Virais/genética
20.
Sci China Life Sci ; 61(7): 836-843, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29445999

RESUMO

Human influenza viruses preferentially bind to sialic acid-α2,6-galactose (SAα2,6Gal) receptors, which are predominant in human upper respiratory epithelia, whereas avian influenza viruses preferentially bind to SAα2,3Gal receptors. However, variants with amino acid substitutions around the receptor-binding sites of the hemagglutinin (HA) protein can be selected after several passages of human influenza viruses from patients' respiratory samples in the allantoic cavities of embryonated chicken eggs. In this study, we detected an egg-adapted HA S190R mutation in the pandemic H1N1 virus 2009 (pdmH1N1), and evaluated the effects of this mutation on receptor binding affinity and pathogenicity in mice. Our results revealed that residue 190 is located within the pocket structure of the receptor binding site. The single mutation to arginine at position 190 slightly increased the binding affinity of the virus to the avian receptor and decreased its binding to the long human α2,6-linked sialic acid receptor. Our study demonstrated that the S190R mutation resulted in earlier death and higher weight loss in mice compared with the wild-type virus. Higher viral titers at 1 dpi (days post infection) and diffuse damage at 4 dpi were observed in the lung tissues of mice infected with the mutant virus.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Mutação , Infecções por Orthomyxoviridae/virologia , Receptores Virais/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Embrião de Galinha , Galinhas , Modelos Animais de Doenças , Ovos/virologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Receptores Virais/química , Virulência/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...