Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(6): e0129474, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26058041

RESUMO

Cancer is a serious disease responsible for many deaths every year in both developed and developing countries. One reason is that the mechanisms underlying most types of cancer are still mysterious, creating a great block for the design of effective treatments. In this study, we attempted to clarify the mechanism underlying esophageal cancer by searching for novel genes and chemicals. To this end, we constructed a hybrid network containing both proteins and chemicals, and generalized an existing computational method previously used to identify disease genes to identify new candidate genes and chemicals simultaneously. Based on jackknife test, our generalized method outperforms or at least performs at the same level as those obtained by a widely used method--the Random Walk with Restart (RWR). The analysis results of the final obtained genes and chemicals demonstrated that they highly shared gene ontology (GO) terms and KEGG pathways with direct and indirect associations with esophageal cancer. In addition, we also discussed the likelihood of selected candidate genes and chemicals being novel genes and chemicals related to esophageal cancer.


Assuntos
Neoplasias Esofágicas/genética , Proteínas/genética , Algoritmos , Biologia Computacional/métodos , Bases de Dados Genéticas , Ontologia Genética , Humanos
2.
Biomed Res Int ; 2015: 964795, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874234

RESUMO

Thyroid cancer is a typical endocrine malignancy. In the past three decades, the continued growth of its incidence has made it urgent to design effective treatments to treat this disease. To this end, it is necessary to uncover the mechanism underlying this disease. Identification of thyroid cancer-related genes and chemicals is helpful to understand the mechanism of thyroid cancer. In this study, we generalized some previous methods to discover both disease genes and chemicals. The method was based on shortest path algorithm and applied to discover novel thyroid cancer-related genes and chemicals. The analysis of the final obtained genes and chemicals suggests that some of them are crucial to the formation and development of thyroid cancer. It is indicated that the proposed method is effective for the discovery of novel disease genes and chemicals.


Assuntos
Bases de Dados Genéticas , Ligantes , Neoplasias da Glândula Tireoide/genética , Algoritmos , Descoberta de Drogas , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA