Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 272(Pt 2): 132910, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38844276

RESUMO

The development of high-efficiency molecularly imprinted photocatalysts is still challenging due to the lack of hydrophilic and suitable functional monomers. In this work, the bio-sourced lysozyme was developed as the hydrophilic functional monomer, and Cu-doped BiOBr was used as the photocatalysts, to prepare a novel hydrophilic molecularly imprinted lysozyme-BiOBr composite (BiOBr-Cu/LyzMIP) with enhanced visible light utilization. Lysozyme could form a transparent layer to mitigate the light transmission obstruction caused by the surface imprinting layer, making it an ideal functional monomer. The prepared BiOBr-Cu/LyzMIP possessed red-shifted visible-light absorption edge and minor reduction of light absorbance, indicating the enhanced utilization of visible light. Accordingly, BiOBr-Cu/LyzMIP demonstrated excellent degradation rate (99.4 % in 20 min), exceptional degradation efficiency (0.211 min-1), and superior reusability. Moreover, BiOBr-Cu/LyzMIP exhibited rapid adsorption equilibrium (20 min), good imprinting factor (2.67), and favourable degradation selectivity (>1.75), indicating the good imprinting effect resulting from abundant functional groups of lysozyme. Versatility experiments on different templates suggested that the proposed approach allowed flexibility in selecting a wide range of hazardous contaminants according to practical requirements. The present work expands the application of lysozyme-based composites in the environmental field, and provides a new one-stop pathway for efficient and sustainable treatment of contaminated water.

2.
Anal Chem ; 96(13): 5150-5159, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502727

RESUMO

Hexavalent chromium [Cr(VI)] is considered a serious environmental pollutant that possesses a hazardous effect on humans even at low concentrations. Thus, the development of a bifunctional material for ultratrace-selective detection and effective elimination of Cr(VI) from the environment remains highly desirable and scarcely reported. In this work, we explore an imidazolium-appended polyfluorene derivative PF-DBT-Im as a highly sensitive/selective optical probe and a smart adsorbent for Cr(VI) ions with an ultralow detection limit of 1.77 nM and removal efficiency up to 93.7%. In an aqueous medium, PF-DBT-Im displays obvious transformation in its emission color from blue to magenta on exclusively introducing Cr(VI), facilitating naked-eye colorimetric detection. Consequently, a portable sensory device integrated with a smartphone is fabricated for realizing real-time and on-site visual detection of Cr(VI). Besides, the imidazolium groups attached onto side chains of PF-DBT-Im are found to be highly beneficial for achieving selective and efficient elimination of Cr(VI) with capacity as high as 128.71 mg g-1. More interestingly, PF-DBT-Im could be easily regenerated following treatment with KBr and can be recycled at least five times in a row. The main factor behind ultrasensitive response and excellent removal efficiency is found to be anion-exchange-induced formation of a unique ground-state complex between PF-DBT-Im and Cr(VI), as evident by FT-IR, XPS, and simulation studies. Thus, taking advantage of the excellent signal amplification property and rich ion-exchange sites, a dual-functional-conjugated polymer PF-DBT-Im is presented for the concurrent recognition and elimination of Cr(VI) ions proficiently and promptly with great prospects in environmental monitoring and water decontamination.

3.
J Mater Chem B ; 12(14): 3404-3416, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38487992

RESUMO

Nanoagents for chemodynamic therapy (CDT) hold a promising future in the field of antimicrobials, especially copper peroxide (CuO2) (CP) nanomaterials which have garnered significant attention due to their ability to self-supply H2O2. Nevertheless, the poor stability of CuO2 remains a critical challenge which restricts its practical application in the antibacterial field. In this study, an advanced nano-antimicrobial system HA-CP@Fe3O4 with enzyme-responsive properties is developed by coating hyaluronic acid (HA) on CuO2-loaded iron tetraoxide nanoparticles. The coating of HA not only stabilizes the CuO2 nanomaterials but also provides responsiveness towards the enzyme hyaluronidase, which is typically secreted by some bacteria. The outer layer of HA in HA-CP@Fe3O4 undergoes decomposition in the presence of hyaluronidase-secreting bacteria, resulting in the release of CuO2@Fe3O4. The released CuO2@Fe3O4 then self-supplies H2O2 and generates reactive oxygen species (ROS) within the infected microenvironment through Fenton and Russell effects, to ultimately achieve effective and precise antimicrobial activity. Simultaneously, the magnetic property provided by Fe3O4 allows the substance to be directed towards the infection site. Both in vitro and in vivo tests demonstrated that HA-CP@Fe3O4 exhibited excellent antimicrobial capabilities at low concentration (30 µg mL-1), exceptional biocompatibility and the ability to accelerate wound healing. The findings of this work offer a new and promising approach for targeted and precise CDT.


Assuntos
Peróxido de Hidrogênio , Nanopartículas , Hialuronoglucosaminidase , Antibacterianos/farmacologia , Cicatrização
4.
Ann Hepatol ; 29(4): 101478, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38354949

RESUMO

INTRODUCTION AND OBJECTIVES: Type 2 Diabetes Mellitus (T2DM), a prevalent metabolic disorder, often coexists with a range of complications, with retinopathy being particularly common. Recent studies have shed light on a potential connection between diabetic retinopathy (DR) and hepatic fibrosis, indicating a possible shared pathophysiological foundation in T2DM. This study investigates the correlation between retinopathy and hepatic fibrosis among individuals with T2DM, as well as evaluates the diagnostic value of DR for significant hepatic fibrosis. MATERIALS AND METHODS: Our cross-sectional analysis incorporated 5413 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2008. The Fibrosis-4 score (FIB-4) classified hepatic fibrosis into different grades (F0-F4), with significant hepatic fibrosis marked as F2 or higher. Retinopathy severity was determined using retinal imaging and categorized into four levels. The analysis of variance or Chi-square tests facilitated group comparisons. Additionally, the receiver operating characteristic (ROC) analysis appraised the predictive accuracy of retinopathy for significant hepatic fibrosis in the T2DM population. RESULTS: Among 5413 participants, the mean age was 59.56 ± 12.41, with 50.2% male. And 20.6% were diagnosed with T2DM. Hepatic fibrosis grading was positively associated with retinopathy severity (OR [odds ratio]: 1.521, 95%CI [confidence interval]: 1.152-2.008, P = 0.003) across the entire population. The association was amplified in the T2DM population according to Pearson's analysis results. The ROC curve demonstrated retinopathy's diagnostic capacity for significant hepatic fibrosis in the T2DM population (AUC [area under curve] = 0.72, 95%CI: 0.651-0.793, P < 0.001). CONCLUSIONS: Retinopathy could serve as an independent predictor of significant hepatic fibrosis in T2DM population. Ophthalmologists are advised to closely monitor T2DM patients with retinopathy.

5.
ACS Appl Mater Interfaces ; 16(4): 4348-4360, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38253997

RESUMO

Prostate cancer is the most common malignancy diagnosed in men. Androgens are directly related to its pathogenesis. Inhibition of the androgen receptor (AR) is considered to be the most promising therapeutic approach for the treatment of prostate cancer. In this study, a new type of pH-responsive dual androgen-blocking nanodrug (FASC MIPs) based on a molecularly imprinted polymer has been designed and synthesized. The nanodrug could selectively sequester testosterone from the prostate tumor through specific molecular imprinting sites and simultaneously deliver the AR inhibitory drug bicalutamide, which ultimately leads to enhanced synergistic therapy of prostate cancer. FASC MIPs demonstrate excellent pH responsiveness in a simulated tumor microenvironment due to the presence of chitosan and significantly inhibit the growth of prostate cancer cells (LNCaP cells) by blocking the G1 phase of cytokinesis. Additionally, the nanodrug also displayed excellent antitumor properties in a xenograft mouse model of prostate cancer without any sign of detrimental effects on healthy tissues and organs. Both in vitro and in vivo studies verified the augmented and synergistic therapeutic effects of FASC MIPs, and the proposed dual-androgen-blocking strategy could explore novel avenues in prostate cancer treatment.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Androgênios/uso terapêutico , Polímeros Molecularmente Impressos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Microambiente Tumoral
6.
J Org Chem ; 88(13): 8722-8737, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37314047

RESUMO

A phosphine-catalyzed ring-opening addition reaction of cyclopropenones with a variety of nucleophiles (NuH), including oxygen-, nitrogen-, sulfur-, and carbon-based ones, has been investigated, which produces potentially useful α,ß-unsaturated carbonyl derivatives in high yields (up to 99%), high regioselectivity, and exclusive E-selectivity. The reaction proceeds in high efficiency under very mild conditions using only 1 mol % PPh3 as the catalyst at room temperature. The method is also amenable for the synthesis of deuterated alkenes when deuterated nucleophiles (NuD) are employed. The mechanism is investigated by experiments and DFT calculations, which suggests an α-ketenyl phosphorus ylide as a key intermediate in the catalytic cycle that captures the nucleophiles in a stereoselective manner.


Assuntos
Fosfinas , Estrutura Molecular , Catálise
7.
Sci Total Environ ; 860: 160467, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36436641

RESUMO

Continuous emergence of persistent organic pollutants perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in various water bodies around the world poses a serious threat to the global ecosystem. The exploration of advanced detection/removal techniques to monitor/treat such type of toxicants is urgently required. Herein, we unveiled a donor-acceptor type conjugated polymer PF-DBT-Im as a first-of-its-kind ratiometric fluorescent probe for visual, amplified, and specific monitoring of PFOA and PFOS with ultra-low detection limits of 6.12 nM (PFOA) and 14.3 nM (PFOS), respectively. PF-DBT-Im undergoes strong aggregation after binding with PFOA/PFOS as evident by transmission electron microscopy, zeta potential measurements, and dynamic light scattering studies. This promotes interchain Förster resonance energy transfer process to endorse an obvious emission color change from blue-to-magenta under ultraviolet lamp excitation. Consequently, a smartphone-integrated portable device is fabricated for realizing rapid and on-site detection of PFOA/PFOS. Besides, a new class of magnetic adsorbent Fe3O4@NH2&F13 is also prepared and used in combination with PF-DBT-Im to remove PFOA/PFOS from the environmental water effectively and rapidly as confirmed by liquid chromatography-mass spectrometry analysis. Thus, utilizing the excellent signal amplification property of PF-DBT-Im and the remarkable magnetic separation capability of Fe3O4@NH2&F13, a multifunctional system is developed for step-wise recognition and separation of PFOA/PFOS from the environmental water proficiently and rapidly.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Água , Ecossistema , Ácidos Alcanossulfônicos/análise , Fluorocarbonos/análise , Caprilatos/análise
8.
Small ; 19(11): e2206621, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36581561

RESUMO

How to control the stability of oil-in-water (O/W) emulsions is one of the main topics for scientists working in colloidal systems. Recently, carbon dots (CDs) have received great interest as smart materials because of their excellent physicochemical properties and versatile applications. Herein, for the first time, advanced and switchable O/W emulsions are presented that are stabilized by the synergistic effect of cationic surfactant cetyltrimethylammonium bromide CTAB (emulsifier) and similarly charged CDs (stabilizer). In the formulated emulsion, the cationic surfactant molecules are adsorbed at the oil and water interface to decrease the interfacial tension and enrich the drops with a positive charge to ensure intensive electrostatic repulsions among them. On the contrary, cationic CDs are distributed in the water phase among the droplets to reduce the water secretion and prevent flocculation and droplet coalescence. The stabilizing effect is found to be universal for emulsions of a range of oil phases. Furthermore, the formulated emulsion is found to be switchable between "stable" and "unstable" modes by adding an equivalent of anionic surfactant sodium dodecyl benzene sulphonate (SDBS). The stabilized and switchable O/W emulsions are believed to have wide practical applications in water purification, pharmaceuticals, protein recognition, as well as catalysis.

9.
Cell Mol Biol Lett ; 27(1): 88, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36210461

RESUMO

BACKGROUND: Current studies show that exosomal miRNAs become an important factor in cancer metastasis. Among the many miRNA studies, miR-7-5p has not been thoroughly investigated in breast cancer metastasis. METHODS: Bioinformatic screening was performed using extant data from the GEO database, and miR-7-5p expression levels in breast cancer cell lines and exosomes were further examined using real-time quantitative PCR (qRT-PCR). The extracted exosomes were characterised by transmission electron microscopy (TEM), particle size analysis and marker protein determination. Cell migration and invasion were then examined using wound healing assays and Transwell assays, respectively. Correlation between miR-7-5p and receptor-like tyrosine kinase (RYK) was analysed by luciferase reporter. The effect of miR-7-5p against RYK-related downstream factors was verified using western blot assays. RESULTS: In this study, we found that the expression of miR-7-5p was significantly different in exosomes secreted from breast cancer cell lines with different high and low invasiveness. Further experiments revealed that miR-7-5p has an important role in inhibiting the migration and invasion of breast cancer. In terms of mechanism of action, miR-7-5p was found to target the RYK, leading to its reduced expression, which in turn caused a reduction in the phosphorylation level of the downstream factor JNK. Reduced levels of phosphorylated JNK factors lead to reduced levels of phosphorylation of c-Jun protein, which in turn leads to increased expression of EMT transcription factors, thereby inhibiting the epithelial-mesenchymal transition (EMT) process to suppress the invasion of breast cancer. CONCLUSION: Thus, we demonstrated that exosomes loaded with high levels of miR-7-5p emitted from less aggressive breast cancers can participate in the atypical WNT pathway by targeting the RYK gene and thus inhibit breast cancer metastasis.


Assuntos
Neoplasias da Mama , MicroRNAs , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/genética
10.
Nanoscale ; 14(31): 11343-11352, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35894543

RESUMO

As the changes of biomarkers directly reflect the occurrence of degenerative diseases, accurate detection of biomarkers is of great significance for disease diagnosis and control. However, single index detection has high uncertainties to accurately reflect the pathological characteristics because of the complexity of the human internal environment and the extremely trace concentration of indicators. To this end, a method for simultaneous detection of dual-biomarkers based on anti-interference magnetic molecularly imprinted polymers (D-mag-MIPs) is thereby proposed, and successfully applied in human urine analysis for the detection of Parkinson's disease bio-indicators 4-dihydroxyphenylacetic acid (DOPAC) and dopamine (DA). In this work, carboxyl functionalized ferric oxide served as a magnetic core, laying a solid foundation for batch detection. Hyperbranched polyethylenimine, whose abundant amino groups can provide multiple interaction forces to templates with high affinity, is employed as a functional monomer. Relative to single-template MIPs, D-mag-MIPs achieve the detection of dual bio-indicators in a one-time test, reducing the false positive result probability and enhancing the detection accuracy. The proposed methodology has been evaluated to exhibit good anti-interference, satisfactory precision, low detection limits, wide linear ranges and fast batch detection for DA and DOPAC. This work thus offers an alternative and efficient pathway for convenient batch detection of dual bio-indicators from biofluids at once.


Assuntos
Impressão Molecular , Ácido 3,4-Di-Hidroxifenilacético , Adsorção , Dopamina , Humanos , Fenômenos Magnéticos , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Polímeros
11.
Anal Chem ; 94(30): 10685-10694, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35849826

RESUMO

Nonspecific interactions of conjugated polymers (CPs) with various proteins prove to be a major impediment for researchers when designing a suitable CP-based probe for the amplified and selective recognition of particular proteins in complex body fluids. Herein, a new strategy is presented for the precise and specific monitoring of clinically important serum albumin (SA) proteins at the nanomolar level using fluorescence resonance energy transfer (FRET)-modulated CP-surfactant ensembles as superior sensing materials. In brief, the newly designed color-tunable CP PF-DBT-Im undergoes intense aggregation with the surfactant sodium dodecyl sulfate (SDS), enabling drastic change in the emission color from violet to deep red due to intermolecular FRET. The emission of PF-DBT-Im/SDS ensembles then changed from deep red to magenta specifically on addition of SAs owing to the exclusive reverse FRET facilitated by synergistic effects of electrostatic interactions, hydrophobic forces, and the comparatively high intrinsic quantum yield of SAs. Interestingly, PF-DBT-Im itself could not differentiate SAs from other proteins, demonstrating the superiority of the PF-DBT-Im/SDS self-assembly over PF-DBT-Im. Finally, an affordable smartphone-integrated point-of-care (PoC) device is also fabricated as a proof-of-concept for the on-site and rapid monitoring of SAs, validating the potential of the system in long-term clinical applications.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Polímeros , Sistemas Automatizados de Assistência Junto ao Leito , Polímeros/química , Albumina Sérica , Tensoativos
12.
J Mater Chem B ; 10(35): 6634-6643, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35257137

RESUMO

A kind of novel multi-stimuli responsive molecularly imprinted polymers with bovine serum albumin (BSA) as a dummy template (MSR-BSA-MIPs) was fabricated for specific recognition of human serum albumin (HSA) with modulated affinity. The MSR-BSA-MIPs were prepared through free radical polymerization using vinyl modified magnetic nanoparticles as substrates, bovine serum albumin (BSA), with high amino acid sequence similarity but low price compared to HSA, as the dummy template, N-(3-(dimethylamino)-propyl)-methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAm) as functional monomers with ionic strength and temperature response. The conditions of polymerization, adsorption and elution were systematically investigated. As expected, the obtained MSR-BSA-MIPs exhibited rapid dispersion or separation states under magnetic control, flexible conversion of adsorption and desorption for the target protein under temperature or ionic strength adjustment. Ten adsorption-desorption cycles were carried out with a little decrease in adsorption capacity under two different elution methods, which also inspired us to combine two elution methods while considering both the stability and adsorption capacity of MSR-BSA-MIPs. The adsorption capacity (Q) and imprinting factor (IF) of MSR-BSA-MIPs for HSA are 43.01 mg g-1 and 4.26, respectively. Furthermore, the blood was opted as a realistic specimen for evaluating the adsorption capability of the proposed adsorbent, emphasizing its good practicality for target protein recognition and enrichment.


Assuntos
Impressão Molecular , Nanopartículas , Humanos , Impressão Molecular/métodos , Polímeros Molecularmente Impressos , Soroalbumina Bovina/química , Albumina Sérica Humana
13.
Mikrochim Acta ; 189(3): 83, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35118576

RESUMO

The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.


Assuntos
Técnicas Biossensoriais , Imagem Molecular , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas , Polímeros/química , Animais , Humanos , Luminescência , Processos Fotoquímicos
14.
J Hazard Mater ; 424(Pt A): 127216, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592596

RESUMO

17ß-estradiol (E2), as one of the pharmaceutical and personal care product, frequently contaminates environmental water as estrogen pollutant and possesses great risk to human survival as well as the sustainable development of the ecosystem. Herein, to achieve an effective adsorbent system for the selective removal of E2 from the environmental water, Fe3O4 nanoparticles are subjected to chemical etching to reduce the overall mass and then employed as carriers to prepare a novel type of lightweight daisy-like magnetic molecularly imprinted polymers (LD-MMIPs) adopting template immobilization strategy. The LD-MMIPs based etched magnetic nanoparticles not only exhibit light mass but also have plentiful imprinted sites in the etched channels, which significantly increases the adsorption capacity for E2. The daisy-like LD-MMIPs own strong magnetic responsiveness, well crystallinity, fast binding kinetics, high adsorption amount, and excellent selectivity. Moreover, combining with HPLC, the LD-MMIPs as adsorbents have been successfully used to specifically recognize and detect trace E2 in environmental water. Thus, the proposed LD-MMIPs with high adsorption capacity hold great potential in monitoring water pollution. Additionally, this work also provides an alternative strategy for improving the adsorption capacity of magnetic molecularly imprinted polymers through a convenient chemical etching technology.


Assuntos
Impressão Molecular , Adsorção , Ecossistema , Estradiol , Humanos , Fenômenos Magnéticos , Polímeros Molecularmente Impressos
15.
Talanta ; 233: 122496, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215114

RESUMO

In this work, a synergistic imprinting strategy combined with metal coordination based on ligand-free Fe3O4-Cu was proposed to fabricate molecularly imprinted polymers (MIPs) for the recognition and isolation of bovine hemoglobin (BHb) specifically in biological samples. Copper doped magnetic microspheres prepared solvothermally in a one-pot pathway act as both magnetic core and metal affinity substrate. Upon anchoring BHb to Fe3O4-Cu through metal coordination, the imprinted layer was formed via dopamine self-polymerization. Profiting from the synergistic effect, the obtained imprinted microspheres exhibited an enhanced adsorption performance with the adsorption capacity of 400.86 mg g-1, imprinting factor of 11.88, selectivity coefficient above 5.8, superior to most of other reported BHb-MIPs. Furthermore, kinetic adsorption analyses pointed to a chemisorption-limited process as described by the pseudo-second-order model, and the isothermal adsorption analyses implied monolayer adsorption, as described by the Langmuir model. In addition, the resultant magnetic MIPs can be used at least six adsorption-desorption cycles without re-incubation in the metallic salt solution, avoiding secondary environmental pollution. Furthermore, the well-defined materials showed selectivity both in individual protein samples and bovine serum, providing a promising potential in bioseparation.


Assuntos
Impressão Molecular , Adsorção , Animais , Bovinos , Hemoglobinas , Fenômenos Magnéticos , Microesferas , Polímeros
16.
Pathol Res Pract ; 224: 153507, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34102435

RESUMO

BACKGROUND: Homologous recombination repair gene (HRR) mutations have been proven to be effective biomarkers for PARP inhibitor therapy for metastatic castration resistant prostate cancer. However, the frequency of HRR mutations in patients with localized and locally advanced prostate cancer is still unclear. This study investigated the profile of HRR gene mutations in Chinese localized and locally advanced prostate cancer patients. MATERIALS AND METHODS: 74 patients with localized and locally advanced prostate cancer patients in Beijing Chaoyang Hospital between May 2018 and September 2019 were retrospectively included. Matched prostate cancer and histologically normal tissues were subjected to next-generation sequencing. Pathogenic alterations of 19 HRR genes were examined. RESULTS: Ten deleterious and suspected deleterious mutations (4 germline and 6 somatic mutations) were detected in 9 of 74 (12.16 %) patients, occurred in seven HRR-related genes, including CDK12, NBN, ATM, ATR, BRCA2, PALB2 and RAD51C. The mutation frequency of HRR genes in this study (12.16 %) was higher than TCGA cohort (7.29 %), and the mutation sites in 7 HRR genes detected in this cohort were different from those of TCGA data. Patients with HRR gene mutations had higher Gleason grade (≥ 3) (P = 0.03) and risk level (very-high) (P = 0.03). Postoperative prostate specific antigen level and positive surgical margin rate was not associated with HRR gene mutation status. CONCLUSIONS: This study illustrated the mutation patterns of HRR genes in Chinese population with localized and locally advanced prostate cancer. These results provide further evidence that HRR gene mutations were more prevalent in patients with higher Gleason grade, or with very-high-risk level. Patients with these clinicopathologic characteristics may need more precise stratification through molecular detection.


Assuntos
Biomarcadores Tumorais/genética , Mutação , Neoplasias da Próstata/genética , Reparo de DNA por Recombinação/genética , Idoso , Idoso de 80 Anos ou mais , China , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos
18.
Sci Total Environ ; 773: 145706, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940765

RESUMO

The hydrophilic biomaterial was constructed based on the soluble extracellular polysaccharides (s-EPS) secreted by Bacillus megaterium and zeolitic imidazolate framework-8 (ZIF-8), namely ZIF-8@s-EPS, wrapped in s-EPS shell with ZIF-8 as the core. ZIF-8@s-EPS was used as a novel multifunctional biomaterial in water treatment for the first time. Unexpectedly, results showed ZIF-8@s-EPS with strong synergistic effect presented multifunctional performances including descaling, antifouling and antibacterial. Scale inhibition efficiency reached 98.63% for CaCO3 and as high as 99.40% for CaSO4 at concentration 20.00 mg/L. The synergy of s-EPS and ZIF-8 demonstrated effective antibacterial activity against Pseudomonas aeruginosa and inhibitory effect on biofilms, and result presented that ZIF-8@s-EPS could inhibit the growth of nearly 89.4% P. aeruginosa. Therefore, the obtained insights will shed light on the development of s-EPS modified biomaterials in water treatment.


Assuntos
Purificação da Água , Zeolitas , Antibacterianos/farmacologia , Materiais Biocompatíveis , Imidazóis , Polissacarídeos
19.
Food Chem ; 356: 129722, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33836357

RESUMO

Rutin (RT), a widely distributed natural flavonoid compound, has been generally utilized as an important active ingredient owing to its considerable biomedical and economic value. Inspired by the structure features of densely-packed bayberry and well-orientated honeycomb, a novel type of magnetic molecularly imprinted polymers (HB-TI-MMIPs) with abundant high-affinity and uniformly-distributed binding sites was rationally constructed for the selective enrichment of RT from Sophora japonica. The polymerization conditions, physicochemical properties, and adsorption performance of the imprinted nanomaterials were systematically investigated. The optimized HB-TI-MMIPs display a high adsorption capacity, fast adsorption rate, and satisfactory selectivity towards RT. Meanwhile, the proposed analytical methodology using HPLC, with HB-TI-MMIPs as adsorbents, successfully applied to enrich and detect RT from Sophora japonica with high recoveries (87.2-94.6%) and good RSDs (lower than 4.3%). Therefore, the fabricated HB-TI-MMIPs with a fast magnetic responsivity and desirable adsorption performance would be attractive in plant active ingredients extraction fields.


Assuntos
Biomimética , Imãs/química , Polímeros Molecularmente Impressos/química , Myrica , Rutina/química , Sophora/química , Adsorção , Rutina/isolamento & purificação , Propriedades de Superfície
20.
Anal Chim Acta ; 1161: 338475, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-33896554

RESUMO

The common elution process of molecularly imprinted polymers (MIPs) is carried out in an acidic medium, which greatly affects the stability and reusability of synthetic MIPs, especially for magnetic MIPs. In this study, we fabricated an acid-resistant imprinted layer formed by phase-transitioned lysozyme on magnetic nanomaterials for selective extraction of chlorogenic acid in Honeysuckle, which often coexists with structural analogs. The newly designed acid-resistant imprinted layer can not only protect the internal magnetic core from denudation and dissolution, but also maintain the integrity of the imprinted layer during the elution process. The resultant magnetic MIPs exhibited good stability with no change on morphology after the repeatedly eluting process, and satisfactory reusability that can be used at least ten adsorption-desorption cycles with almost no decrease for adsorption capacity. In addition, the resultant materials possess satisfactory magnetism, uniform morphology with typical core-shell structure, stable crystallization, and good adsorption performance showing on high adsorption amount (10.82 mg g-1), fast kinetic equilibrium time (as short as 30 min), and satisfactory selectivity (IF = 2.85, SC > 1.5). At last, the obtained magnetic MIPs as adsorbents coupled with HPLC were successfully used to selective extract CGA in Honeysuckle samples with the high recoveries in the range of 92.0-104.4%, and the contents of CGA in Honeysuckle samples from the different origin are calculated in the range of 0.98%-1.24%.


Assuntos
Lonicera , Impressão Molecular , Nanoestruturas , Adsorção , Ácido Clorogênico , Fenômenos Magnéticos , Polímeros , Extração em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...