Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 204(1): 80, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-34954806

RESUMO

Strain W712T was isolated from rhizosphere soil of Nicotiana tabacum L. collected from Kunming, south-west China. Cells were Gram-staining negative, aerobic, motile and rod shaped. The isolate grew at 20-45 °C (optimum 30 °C), pH 6.0-8.0 (optimum pH 7.0) and in the presence of up to 3.0% (w/v) NaCl (optimum 1%, w/v). Ubiquinone-10 was the only respiratory quinone type. Polar lipids contained diphosphatidylglycerol, phosphatidylmehtylethanolamine, phosphatidylglycerol, phosphatidylcholine and an unidentified aminolipid. The major fatty acids were detected as summed feature 8 (C18:1 ω7c or C18:1 ω6c), summed feature 3 (C16:1 ω7c or C16:1 ω6c) and C18:1 2OH. The genomic DNA G + C content was 68.7%. The ANI values were 94.3%, 93.3% and 93.6% between Azospirillum baldaniorum Sp245T, Azospirillum brasilense ATCC 49958T, Azospirillum formosense CC-Nfb-7T and strain W712T, respectively, which were lower than the prokaryotic species delineation threshold of 95.0-96.0%. The digital DNA-DNA hybridization values between A. baldaniorum Sp245T, A. brasilense ATCC 49958T, A. formosense CC-Nfb-7T and strain W712T indicated that the candidate represents a novel genomic species. According to the phenotypic and genotypic characteristics, we propose that strain W712T warrants the assignment to a novel species, for which the name Azospirillum tabaci sp. nov. (type strain W712T = CGMCC 1.18567T = KCTC 82186T) is proposed.


Assuntos
Azospirillum , Rizosfera , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Nicotiana
2.
Plant Physiol ; 160(2): 738-48, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22837356

RESUMO

Most of the world's natural fiber comes from cotton (Gossypium spp.), which is an important crop worldwide. Characterizing genes that regulate cotton yield and fiber quality is expected to benefit the sustainable production of natural fiber. Although a huge number of expressed sequence tag sequences are now available in the public database, large-scale gene function analysis has been hampered by the low-efficiency process of generating transgenic cotton plants. Tobacco rattle virus (TRV) has recently been reported to trigger virus-induced gene silencing (VIGS) in cotton leaves. Here, we extended the utility of this method by showing that TRV-VIGS can operate in reproductive organs as well. We used this method to investigate the function of KATANIN and WRINKLED1 in cotton plant development. Cotton plants with suppressed KATANIN expression produced shorter fibers and elevated weight ratio of seed oil to endosperm. By contrast, silencing of WRINKLED1 expression resulted in increased fiber length but reduced oil seed content, suggesting the possibility to increase fiber length by repartitioning carbon flow. Our results provide evidence that the TRV-VIGS system can be used for rapid functional analysis of genes involved in cotton fiber development.


Assuntos
Adenosina Trifosfatases/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Gossypium/genética , Vírus de Plantas/genética , Adenosina Trifosfatases/genética , Agrobacterium tumefaciens/genética , Clonagem Molecular , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Vetores Genéticos , Gossypium/crescimento & desenvolvimento , Gossypium/virologia , Katanina , Microscopia Eletrônica de Varredura , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Proantocianidinas/genética , Proantocianidinas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura
3.
Biotechnol Biofuels ; 5(1): 10, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22377043

RESUMO

BACKGROUND: Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid) which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. RESULTS: The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2) is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s) through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78%) and a corresponding reduction in polyunsaturated fatty acids (< 3%) in its seed oil. The control Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60) in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha that will help reduce public concerns for environmental issues surrounding genetically modified plants. CONCLUSION: In this study we produced seed-specific JcFAD2-1 RNA interference transgenic Jatropha without a selectable marker. We successfully increased the proportion of oleic acid versus linoleic in Jatropha through genetic engineering, enhancing the quality of its oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA