Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pract Lab Med ; 40: e00409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38846326

RESUMO

Objective: This study aimed to establish the reference intervals of Cyfra21-1 and CEA for the local screening populations using a chemiluminescence method. Methods: A total of 4845 healthy adults and 190 lung cancer patients were included from the First Hospital of Hebei Medical University. The levels of Cyfra21-1 and CEA were measured to establish the local reference intervals. Results: The upper limit reference intervals for Cyfra21-1 and CEA were determined as 3.19 ng/ml and 3.13 ng/ml, respectively. Notably, both Cyfra21-1 and CEA levels were found to be higher in males than in females. Additionally, both biomarkers showed an increasing trend with age.In terms of diagnostic efficacy, the receiver operating characteristic (ROC) curve areas for Cyfra21-1, CEA, and their combination in lung cancer were 0.86, 0.73, and 0.91, respectively. Conclusion: Our study revealed that the reference intervals of Cyfra21-1 and CEA in the local population differed from the established reference intervals. Furthermore, both biomarkers exhibited gender-dependent variations and demonstrated a positive correlation with age. Combining the two biomarkers showed potential for improving the diagnosis rate of lung cancer.

2.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1818-1825, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812194

RESUMO

A label-free fluorescence method based on malachite green/aptamer was developed for the detection of ochratoxin A(OTA) in traditional Chinese medicines. Malachite green itself exhibits weak fluorescence. Upon interaction with the aptamer specific to OTA, the G-quadruplex structure of the aptamer provides a protective microenvironment for malachite green, which significantly enhances its fluorescence signal. After OTA is added, preferential binding occurs between the aptamer and OTA, and malachite green will be released from the aptamer, which weakens the fluorescence signal. According to this principle, this paper established a fluorescence method with the aptamer of OTA as the recognition element and malachite green as the fluorescent probe for the detection of OTA in traditional Chinese medicines. The key experimental factors such as the concentrations of metal ions, aptamer, and malachite green were optimized to improve the performance of the method. OTA was detected under the optimal experimental conditions, and the results showed that with the increase in OTA concentration, the fluorescence signal gradually weakened. Within the range of 20-1 000 nmol·L~(-1), the OTA concentration was linearly correlated with the fluorescence signal ratio ΔF/F(ΔF=F_0-F, where F_0 is the fluorescence signal of aptamer/malachite green, and F is the fluorescence signal of OTA/aptamer/malachite green), with R~2 of 0.995. The limit of detection of the established method was 7.1 nmol·L~(-1). Furthermore, three substances structurally similar to OTA and two mycotoxins that may coexist with OTA were selected for experiments, which aimed to examine the cross-reactivity and specificity of the established method. The cross-reactivity experiments demonstrated that the interferers did not significantly affect the fluorescence signal of the detection system. The specificity experiments revealed that when mycotoxins were mixed with OTA, the fluorescence signal generated by the mixture closely resembled that of OTA itself. The results indicated that even in the presence of interferents, the established method remained unaffected and demonstrated excellent specificity. Additionally, this method exhibited remarkable reproducibility and stability. In the case of simple centrifugation and dilution of traditional Chinese medicine samples(Puerariae Lobatae Radix, Sophorae Flavescentis Radix, and Periplocae Cortex), the OTA detection method was applicable, with recovery rates ranging from 91.5% to 121.3%. Notably, this approach does not need complex pretreatment of traditional Chinese medicines while offering simple operation, low detection costs, and short detection time. Furthermore, by incorporating aptamers into the quality evaluation of traditional Chinese medicines, this method expands the application scope of aptamers.


Assuntos
Aptâmeros de Nucleotídeos , Medicamentos de Ervas Chinesas , Ocratoxinas , Corantes de Rosanilina , Corantes de Rosanilina/química , Corantes de Rosanilina/análise , Ocratoxinas/análise , Ocratoxinas/química , Aptâmeros de Nucleotídeos/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Espectrometria de Fluorescência/métodos , Contaminação de Medicamentos/prevenção & controle , Fluorescência , Medicina Tradicional Chinesa
3.
Front Pharmacol ; 14: 1290253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026943

RESUMO

Background: Dilated cardiomyopathy (DCM), a specific form of cardiomyopathy, frequently presents clinically with either left ventricular or biventricular enlargement, often leading to progressive heart failure. In recent years, the application of bioinformatics technology to scrutinize the onset, progression, and prognosis of DCM has emerged as a fervent area of interest among scholars globally. Methods: In this study, core genes closely related to DCM were identified through bioinformatics analysis, including weighted gene co expression network analysis (WGCNA) and single sample gene set enrichment analysis (ssGSEA) and so on. The correlation was verified through experiments on DCM patients, DCM rat models, and core gene knockout mice. Subsequently, the effects of glucocorticoids on DCM and the regulation of core genes were observed. Result: In the present study, natriuretic peptide receptor 1 (NPR1) was identified as a core gene associated with DCM through WGCNA and ssGSEA. Significant impairment of cardiac and renal function was observed in both DCM patients and rats, concomitant with a notable reduction in NPR1 expression. NPR1 KO mice displayed symptomatic manifestations of DCM, underscoring the pivotal role of NPR1 in its pathogenesis. Notably, glucocorticoid treatment led to substantial improvements in cardiac and renal function, accompanied by an upregulation of NPR1 expression. Discussion: These findings highlight the critical involvement of NPR1 in the pathophysiology of DCM and its potential as a key target for glucocorticoid-based DCM therapy. The study provides a robust theoretical and experimental foundation for further investigations into DCM etiology and therapeutic strategies.

4.
J Thorac Dis ; 15(3): 1267-1278, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37065568

RESUMO

Background: Lung cancer (LC) is the most common cancer. Using data from The Cancer Genome Atlas (TCGA), we analyzed the functional roles of M1 macrophage status in LC patients. Methods: Clinical and transcriptome data of LC patients were obtained from the TCGA dataset. We identified M1 macrophage-related genes in LC patients and investigated the underlying molecular mechanisms of these genes in LC patients. After performing a least absolute shrinkage and selection operator (LASSO) Cox regression analysis, the LC patients were divided into two subtypes, and the underlying mechanism of the association between them was further explored. A comparison of immune infiltration was conducted between the two subtypes. Based on gene set enrichment analysis (GSEA), the key regulators associated with subtypes were further explored. Results: M1 macrophage-related genes were identified using TCGA data, and these genes might be related to the activation of the immune response and cytokine-mediated signaling pathways in LC. A seven M1 macrophage-related gene signature (including STAT1, TAP1, UBE2L6, TAP2, CXCR6, PSMB8 and CD2) was identified in LC using LASSO Cox regression analysis. Two subtypes (low risk and high risk) of LC patients were created based on the seven M1 macrophage-related gene signature. Univariate and multivariate survival analyses further confirmed that the subtype classification was an effective independent prognostic factor. Moreover, the two subtypes were correlated with immune infiltration, and GSEA revealed that the pathways of tumor cell proliferation and immune-related biological processes (BPs) might play an important role in LC in the high-risk group and low-risk group, respectively. Conclusions: M1 macrophage-related subtypes of LC were identified and were closely associated with immune infiltration. The gene signature involved in M1 macrophage-related genes could help make a distinction and predict prognosis for LC patients.

6.
BMC Psychiatry ; 23(1): 49, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653784

RESUMO

BACKGROUND: Depression is a psychiatric disorder with global public health concerns. Although a number of risk factors have been identified for depression, there is no clear relationship between biochemistry and depression. In this study, we assessed whether depressive disorders are significantly associated with biochemical indicators. METHODS: Our study included 17,561 adults (age ≥ 18 years) participating in the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The relationship between depression and biochemical and obesity indicators was analyzed by logistic regression. RESULTS: As compared to the control group, men with depression showed significantly higher levels of gamma-glutamyl transferase, glucose, and triglycerides, and lower levels of albumin and total bilirubin. The depressed group had higher levels of alkaline phosphatase, bicarbonate, and sodium than the control group. CONCLUSION: Several biochemical and anthropometric indices were associated with depression in this study. It would be interesting to further analyze their cause-effect relationship. LIMITATIONS: This study is a cross-sectional study. The population is less restricted and does not exclude people with diabetes, pregnancy, etc., so it is less significant for a specific population. Dietary information was not included, as diet plays an important role in many indicators.


Assuntos
Transtorno Depressivo , Masculino , Gravidez , Adulto , Humanos , Feminino , Adolescente , Transtorno Depressivo/psicologia , Inquéritos Nutricionais , Estudos Transversais , Dieta , Fatores de Risco , Depressão/epidemiologia
7.
Anal Sci ; 39(1): 51-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36242755

RESUMO

Ochratoxin A (OTA) is a common mycotoxin with high carcinogenicity; therefore, it is crucial to establish a simple, rapid, and sensitive method for its detection. In this study, we developed a "turn-on" fluorescence assay for detecting OTA based on guanine quenching of the aptamer. The method uses fluorescein (FAM) fluorophore to label the complementary strand of the OTA aptamer, Fc-DNA. In the absence of OTA, the Fc-DNA hybridizes with the aptamer to form a double strand. Due to the occurrence of photo-induced electron transfer (PET), the FAM fluorescence signal is quenched as the FAM on the Fc-DNA approaches the guanine of the aptamer at the 5' end. When OTA is present, the aptamer binds to it and thus, is unable to hybridize with Fc-DNA to form a double strand; the FAM fluorescence signal is restored as FAM moves away from the guanine of the aptamer. The assay achieved OTA detection at a detection limit of 28.4 nM. The application of the original guanine of the aptamer as the quenching agent helps avoid the complex designing and labeling of the aptamer, which ensures the high affinity of the aptamer for OTA. Meanwhile, this "turn-on" detection mode helps avoid potential false-positive results as in the "turn-off" mode and improves the assay's sensitivity. Additionally, the method has good selectivity and can be used to detect OTA in traditional Chinese medicine. This method provides a simple, low-cost, and rapid method for OTA detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Ocratoxinas , Limite de Detecção , Aptâmeros de Nucleotídeos/metabolismo , Ocratoxinas/análise , Corantes Fluorescentes , Técnicas Biossensoriais/métodos
8.
Neuropharmacology ; 213: 109128, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588859

RESUMO

Our previous study suggested that inhibition of Phosphodiesterase 2 ameliorates memory loss upon exposure to oxidative stress. While whether memory enhancing effects of PDE2 inhibition on Alzheimer's disease mouse model are involved in antioxidant defense and neuronal remodeling, are largely unexplored. The present study addressed whether and how PDE2 inhibitor Bay 60-7550 rescued Aß oligomers (Aßo)-induced neuronal damage and memory impairment. The results suggested that exposure of primary cortical neurons to Aßo induced neuronal cells damage and increased PDE2 expression, which were paralleled to an increase in the oxidative parameter malondialdehyde (MDA) level and cellular apoptosis. However, this Aßo-induced oxidative damage was blocked by pre-treatment with protein kinase A or G (PKA or PKG) inhibitor, suggesting the involvement of cAMP/cGMP signaling. Moreover, microinjection of Aßo into the prefrontal cortex of mice increased the MDA level; while Bay 60-7550 reversed this effect and increased antioxidant and anti-apoptotic factors, i.e. increased trolox-equivalent-antioxidant capacity and Bcl-2/Bax ratio. Bay 60-7550 also rescued Aßo-induced synaptic atrophy and memory deficits, as evidenced by the increased synaptic proteins' levels and spine density in the prefrontal cortex, and improved cognitive behaviors by decreased working memory errors in the eight-arm maze and increased discrimination index in the novel object recognition test. These findings suggest that inhibition of PDE2 contributes to antioxidant defense and neuronal remodeling by regulation of cAMP/cGMP signaling, which provide a theoretical basis for the future use of PDE2 inhibitors as the anti-AD drugs.


Assuntos
Doença de Alzheimer , Inibidores de Fosfodiesterase , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/farmacologia , GMP Cíclico/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2 , Hipocampo , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Endogâmicos ICR , Neurônios , Fragmentos de Peptídeos , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico
9.
Mol Neurodegener ; 16(1): 70, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593014

RESUMO

BACKGROUND: N6-methyladenosine (m6A) modification of RNA influences fundamental aspects of RNA metabolism and m6A dysregulation is implicated in various human diseases. In this study, we explored the potential role of RNA m6A modification in the pathogenesis of Alzheimer disease (AD). METHODS: We investigated the m6A modification and the expression of m6A regulators in the brain tissues of AD patients and determined the impact and underlying mechanism of manipulated expression of m6A levels on AD-related deficits both in vitro and in vivo. RESULTS: We found decreased neuronal m6A levels along with significantly reduced expression of m6A methyltransferase like 3 (METTL3) in AD brains. Interestingly, reduced neuronal m6A modification in the hippocampus caused by METTL3 knockdown led to significant memory deficits, accompanied by extensive synaptic loss and neuronal death along with multiple AD-related cellular alterations including oxidative stress and aberrant cell cycle events in vivo. Inhibition of oxidative stress or cell cycle alleviated shMettl3-induced apoptotic activation and neuronal damage in primary neurons. Restored m6A modification by inhibiting its demethylation in vitro rescued abnormal cell cycle events, neuronal deficits and death induced by METTL3 knockdown. Soluble Aß oligomers caused reduced METTL3 expression and METTL3 knockdown exacerbated while METTL3 overexpression rescued Aß-induced synaptic PSD95 loss in vitro. Importantly, METTL3 overexpression rescued Aß-induced synaptic damage and cognitive impairment in vivo. CONCLUSIONS: Collectively, these data suggested that METTL3 reduction-mediated m6A dysregulation likely contributes to neurodegeneration in AD which may be a therapeutic target for AD.


Assuntos
Doença de Alzheimer , Adenosina/metabolismo , Doença de Alzheimer/genética , Ciclo Celular , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , RNA
10.
Behav Brain Res ; 411: 113374, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34023306

RESUMO

Major depressive disorder (MDD) is a severe mental disorder, which is closely related to the deficiency of monoamine neurotransmitters. Our previous study suggested that acute treatment with J147, a novel curcumin derivative, produced antidepressant-like effects in mouse model of depression by regulation of 5-HT receptor subtypes. However, it is still unknown whether the antidepressant-like effects of J147 are involved in activation of central monoaminergic system. In this study, a series of classical behavior tests were employed to assess the involvement of monoaminergic system in antidepressant- and anxiolytic-like effects after sub-acute treatment of mice with J147 for 3 days. The results suggested that J147 at 10 mg/kg significantly reduced the immobility time in both the tail suspension and forced swimming tests, but didn't show effects in the sucrose preference test. Similarly, sub-acute treatment of J147 did not induce amelioration in novelty suppressed feeding test. J147 increased duration and crossing time in the central area, but did not show significant change in rearing counts in the open field test. In neurochemical assays, studies suggested that serotonin and noradrenaline levels were significantly increased in the frontal cortex and hippocampus after treatment of J147 by the high-performance liquid chromatography (HPLC) with an electrochemical detector. Moreover, J147-induced significant inhibition of monoamine oxidase A activity. These findings suggest that the antidepressant- and anxiolytic-like effects of J147 might be related to the monoaminergic system by the evidence that high dose of J147 inhibits monoamine oxidase (MAO)-A activity and increases synaptic monoamines in the mouse brain.


Assuntos
Monoaminas Biogênicas/metabolismo , Curcumina/análogos & derivados , Depressão/metabolismo , Animais , Ansiolíticos/metabolismo , Ansiolíticos/farmacologia , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Curcumina/metabolismo , Curcumina/farmacologia , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Modelos Animais de Doenças , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Monoaminoxidase/efeitos dos fármacos , Monoaminoxidase/metabolismo , Atividade Motora/efeitos dos fármacos , Norepinefrina/metabolismo , Serotonina/metabolismo
11.
Front Cell Dev Biol ; 9: 618586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692996

RESUMO

POLD1, the catalytic subunit of DNA polymerase δ, plays a critical role in DNA synthesis and DNA repair processes. Moreover, POLD1 is downregulated in replicative senescence to mediate aging. In any case, the components of age-related downregulation of POLD1 expression have not been fully explained. In this article, we elucidate the mechanism of the regulation of POLD1 at the transcription level and found that the transcription factor CCCTC-binding factor (CTCF) was bound to the POLD1 promoter area in two sites. The binding level of CTCF for the POLD1 promoter appeared to be related to aging and was confirmed to be positively controlled by the CTCF level. Additionally, cell senescence characteristics were detected within the cells transfected with short hairpin RNA (shRNA)-CTCF, pLenti-CMV-CTCF, shRNA-POLD1, and pLenti-CMV-POLD1, and the results showed that the CTCF may contribute to the altered expression of POLD1 in aging. In conclusion, the binding level of CTCF for the POLD1 promoter intervened by an age-related decrease in CTCF and downregulated the POLD1 expression in aging. Moreover, the decrease in CTCF-mediated POLD1 transcription accelerates the progression of cell aging.

12.
Front Cell Dev Biol ; 8: 599389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363155

RESUMO

A global, quantitative proteomics/systems-biology analysis of the selective pharmacological inhibition of phosphodiesterase-4D (PDE4D) revealed the differential regulation of pathways associated with neuroplasticity in memory-associated brain regions. Subtype selective inhibitors of PDE4D bind in an allosteric site that differs between mice and humans in a single amino acid (tyrosine vs. phenylalanine, respectively). Therefore to study selective inhibition of PDE4D by BPN14770, a subtype selective allosteric inhibitor of PDE4D, we utilized a line of mice in which the PDE4D gene had been humanized by mutating the critical tyrosine to phenylalanine. Relatively low doses of BPN14770 were effective at reversing scopolamine-induced memory and cognitive deficits in humanized PDE4D mice. Inhibition of PDE4D alters the expression of protein kinase A (PKA), Sirt1, Akt, and Bcl-2/Bax which are components of signaling pathways for regulating endocrine response, stress resistance, neuronal autophagy, and apoptosis. Treatment with a series of antagonists, such as H89, sirtinol, and MK-2206, reversed the effect of BPN14770 as shown by behavioral tests and immunoblot analysis. These findings suggest that inhibition of PDE4D enhances signaling through the cAMP-PKA-SIRT1-Akt -Bcl-2/Bax pathway and thereby may provide therapeutic benefit in neurocognitive disorders.

13.
Front Aging Neurosci ; 12: 589588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192484

RESUMO

Alzheimer's disease (AD) is one of the neurodegenerative brain disorders inducing nearly half of dementia cases, and the diagnosis and treatment of AD are the primary issues clinically. However, there is a lack of effective biomarkers and drugs for AD diagnosis and therapeutics so far. In this study, bioinformatics analysis combined with an experimental verification strategy was used to identify the biomarkers and the quercetin targets for AD diagnosis and treatment. First, differentially expressed genes in the AD brain were identified by microarray data analysis. Second, quercetin, a predominant flavonoid, was used to screen the target genes. Third, the drug-disease network was determined, and the target genes of quercetin treatment were obtained in AD-related HT-22 cell-based assay. Six genes, including MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS, were validated by the system pharmacology analysis in the hippocampus samples of AD patients. The results suggested that MAPT, PIK3R1, CASP8, and DAPK1 were significantly increased, but MAPK1 and CYCS were significantly decreased in HT-22 cells after Aß1-42 treatment. Moreover, MAPK1 and CYCS were markedly increased, but MAPT, PIK3R1, CASP8, and DAPK1 were markedly decreased after quercetin treatment in these HT-22 cells. Altogether, MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS are all the biomarkers for AD diagnosis and the targets of quercetin treatment, and our findings may provide valuable biomarkers for AD diagnosis and treatment.

14.
Front Cell Dev Biol ; 8: 814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015035

RESUMO

Despite the great increase in human lifespan with improved medical care, the physiological and pathological changes such as memory and cognitive disorders and associated anxiety and depression are major concern with aging. Molecular mechanisms underlying these changes are little known. The present study examined the differentially expressed genes (DEGs) and the genes with differentially expressed isoforms in three brain regions, anterior cingulate cortex (ACC), amygdala and hippocampus, throughout the lifespan of mice. Compared to 2-month old mice, both 12- and 24-month old mice displayed memory and cognitive impairments in the Morris water maze, Y-maze, and novel object recognition tests and depression- and anxiety-like behaviors in the tail suspension, forced swimming, open field, and elevated plus maze tests. RNA sequencing analysis identified 634 and 1078 DEGs in ACC, 453 and 1015 DEGs in the amygdala and 884 and 1054 DEGs in hippocampus in the 12- and 24-month old mice, respectively. Similarly, many genes with differentially expressed isoforms were also identified in these three brain regions in the 12- and 24-month old mice. Further functional analysis revealed that many DEGs and the genes with differentially expressed isoforms in the ACC and amygdala were mapped to depression- and anxiety-related genes, respectively and that a lot of DEGs and the genes with differentially expressed isoforms in hippocampus were mapped to cognitive dysfunction-related genes from both 12- and 24-month old mice. All of these mapped DEGs and the genes with differentially expressed isoforms were closely related to neuroinflammation. Our findings indicate that these neuroinflammation-related DEGs and the genes with differentially expressed isoforms are likely new targets in the management of memory/cognitive impairment and emotional disorders during the aging.

15.
Neurotoxicology ; 76: 191-199, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31738978

RESUMO

The pathological process of Alzheimer disease (AD) is closely related to energy metabolism disorders. In the nervous system, monocarboxylate transporter 4 (MCT4) is expressed in the glial cell membrane and is responsible for transporting intracellular lactic acid. In this study, we found that MCT4 expression was elevated in the cerebrospinal fluid of patients with mild cognitive impairment. Two- and three-month-old APPswe/PS1dE9 (APP/PS1) mice and C57 mice were studied. The APP/PS1 mice began to show cognitive decline at 3 months of age and MCT4 in the hippocampus of 2- and 3-month old APP/PS1 mice was higher than that of C57 mice. This change is similar to that in people with mild cognitive impairment. Subsequently, MCT4 overexpression/siRNA lentiviral particles were used to establish stable primary astrocytes. Overexpression and knockdown of MCT4 had no significant effect on glial cell apoptosis. Transfected astrocytes were co-cultured with neurons. Overexpression of cytoplasmic MCT4 increased the expression of Aß42, γ-secretase, and CD147 in the co-culture system; in addition, the growth ability of primary neurons decreased significantly, extracellular lactic acid increased, and neuronal apoptosis increased. In AD model mice, siMCT4 injection improved cognitive ability, reduced neuronal apoptosis, and reduced γ-secretase expression. Taken together, these results suggest that MCT4 is involved in energy metabolism during early pathological processes in AD, and suppression of MCT4 represents a new potential neuroprotective factor for AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Astrócitos/metabolismo , Transportadores de Ácidos Monocarboxílicos/líquido cefalorraquidiano , Proteínas Musculares/líquido cefalorraquidiano , Neurônios/metabolismo , Idoso , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Basigina/metabolismo , Técnicas de Cocultura , Disfunção Cognitiva/líquido cefalorraquidiano , Modelos Animais de Doenças , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Fragmentos de Peptídeos/metabolismo
16.
J Obstet Gynaecol Res ; 45(7): 1363-1370, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31106959

RESUMO

AIM: In this study, a questionnaire survey was conducted to find the relationship between preeclampsia (PE) and incontinentia pigmenti (IP). METHODS: Using a questionnaire survey of 147 women whose children were diagnosed with IP, this study first investigated their clinical manifestations and complications during pregnancy. The manifestations included high blood pressure, proteinuria and edema after 20 weeks of gestation. Women with and without IP were separated into two groups, then analyzed accordingly. RESULTS: There were 45 mothers with IP in the case group and 102 mothers without IP in the control group. IP mothers who were pregnant with an IP fetus were at higher risk for hypertension, proteinuria, and edema during pregnancy as compared with non-IP mothers that carried an IP fetus. Out of these 147 mothers, 8 mothers with IP and 6 mothers without IP presented with new-onset hypertension during pregnancy (P = 0.024),7 mothers with IP and 4 mothers without IP presented with new-onset proteinuria during pregnancy (P = 0.013),and 21 IP mothers and 27 non-IP mothers presented with edema during pregnancy (P = 0.016). Although no statistical difference was observed, mothers in the case group were more likely to develop the above three symptoms concurrently (6.7% vs 2.0%; P = 0.168), and were more likely to be diagnosed with PE (8.9% vs 3.9%; P = 0.249). CONCLUSION: Our study revealed that the simultaneous occurrence of IP in the mother and fetus increased the likelihood of clinical manifestations associated with PE during pregnancy.


Assuntos
Hipertensão Induzida pela Gravidez/genética , Incontinência Pigmentar/genética , Doenças do Recém-Nascido/genética , Pré-Eclâmpsia/genética , Adulto , Feminino , Humanos , Recém-Nascido , Gravidez , Fatores de Risco , Inquéritos e Questionários
17.
Biomed Pharmacother ; 114: 108833, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30978525

RESUMO

Age-related changes such as increased oxidative stress and DNA damage are important risk factors for Alzheimer's disease (AD). This study aimed to clarify the role of POLD1, the catalytic subunit of DNA polymerase δ, in neurodegeneration symptoms of AD. POLD1 expression levels were evaluated in patients with different neurodegenerative diseases by ELISA, RT-PCR and Western blot analysis. The impairment of cognitive ability in AD patients and senescence-accelerated mouse prone 8 (SAMP8) mice were evaluated by MMSE/MoCA score and Morris water maze (MWM) test. We found that serum concentration and expression levels of POLD1 in lymphocytes were reduced in AD patients. The cognitive impairment in AD patients and SAMP8 mice was associated with reduced POLD1 expression. In addition, POLD1 knockdown led to premature senescence and increased DNA damage in primary neuronal cells of SAMP8 mice. In conclusion, this is the first study suggesting that the deficiency of POLD1 may aggravate AD progression, and POLD1 is a potential diagnostic marker and therapeutic target for AD.


Assuntos
Doença de Alzheimer/genética , Transtornos Cognitivos/genética , Cognição/fisiologia , Disfunção Cognitiva/genética , DNA Polimerase III/deficiência , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Animais , Modelos Animais de Doenças , Feminino , Humanos , Linfócitos/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Pessoa de Meia-Idade , Estresse Oxidativo/genética
18.
Cell Mol Life Sci ; 76(14): 2833-2850, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30895337

RESUMO

POLD1, the catalytic subunit of DNA Pol δ, plays an important role in DNA synthesis and DNA damage repair, and POLD1 is downregulated in replicative senescence and mediates cell aging. However, the mechanisms of age-related downregulation of POLD1 expression have not been elucidated. In this study, four potential CpG islands in the POLD1 promoter were found, and the methylation levels of the POLD1 promoter were increased in aging 2BS cells, WI-38 cells and peripheral blood lymphocytes, especially at a single site, CpG 36, in CpG island 3. Then, the transcription factor E2F1 was observed to bind to these sites. The binding affinity of E2F1 for the POLD1 promoter was found to show age-related attenuation and was confirmed to be positively regulated by the E2F1 level and negatively regulated by POLD1 promoter methylation. Moreover, cell senescence characteristics were observed in the cells transfected with shRNA-E2F1 and could contribute to the downregulation of POLD1 induced by the E2F1 decline. Collectively, these results indicated that the attenuation of the binding affinity of E2F1 for the POLD1 promoter, mediated by an age-related decline in E2F1 and increased methylation of CpG island 3, downregulates POLD1 expression in aging.


Assuntos
Senescência Celular , DNA Polimerase III/metabolismo , Fator de Transcrição E2F1/metabolismo , Regulação da Expressão Gênica , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Ilhas de CpG , Metilação de DNA , DNA Polimerase III/genética , Reparo do DNA , Replicação do DNA , Regulação para Baixo , Fator de Transcrição E2F1/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Adulto Jovem
19.
Front Chem ; 7: 892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32010663

RESUMO

Aluminum hydride (AlH3) is a promising candidate for hydrogen storage due to its high hydrogen density of 10 wt%. Several polymorphs of AlH3 (e.g., α, ß, and γ) have been successfully synthesized by wet chemical reaction of LiAlH4 and AlCl3 in ether solution followed by desolvation. However, the synthesis process of α'-AlH3 from wet chemicals still remains unclear. In the present work, α'-AlH3 was synthesized first by the formation of the etherate AlH3 through a reaction of LiAlH4 and AlCl3 in ether solution. Then, the etherate AlH3 was heated at 60°C under an ether gas atmosphere and in the presence of excess LiAlH4 to remove the ether ligand. Finally, α'-AlH3 was obtained by ether washing to remove the excess LiAlH4. It is suggested that the desolvation of the etherate AlH3 under an ether gas atmosphere is essential for the formation of α'-AlH3 from the etherate AlH3. The as-synthesized α'-AlH3 takes the form of rod-like particles and can release 7.7 wt% hydrogen in the temperature range 120-200°C.

20.
Exp Ther Med ; 16(2): 1304-1310, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30116379

RESUMO

The present study prepared 2 types of DNA diagnostic chips based on 16S ribosomal DNA (rDNA) and 18S-28S rDNA, and evaluated their values in the detection of pathogens in intracranial bacterial/fungal infections. A total of 14 probes of bacteria (Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Haemophilus influenza, Stenotrophomonas maltophilia, Neisseria meningitidis, Enterobacter spp., Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, Staphylococcus aureus, Streptococcus pneumonia and coagulase negative staphylococcus) and 4 probes of fungi (Candida albicans, Candida tropicalis, Candida glabrata and Cryptococcus neoformans), determined frequently in cerebrospinal fluid (CSF), were designed and used for preparation of microarrays. CSF samples from 88 patients with clinically suspected intracranial infection and standard strains were used to evaluate the chips. The same samples were also analyzed by culture and sequencing. The results demonstrated that the sensitivity, specificity and false-positive rate of the microarray assay compared with culture method were 100 vs. 68.3% (P<0.05), 97.1 vs. 100%, and 2.9 vs. 0%, respectively. The minimum concentration of detection with the chips was 10 cfu ml-1 for bacteria and 100 cfu ml-1 for fungi. The specificity of the probes was confirmed, and no cross-reaction was detected in the present study. Furthermore, 13 cases were positive in the microarray and negative in culture. However, 4 cases were not identified as clear pathogens and only positive in the 16S probe sites. The diagnostic DNA microarray for intracranial infections has proven to be more rapid and sensitive, and it may be a better option for clinical application than culture methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...