Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(4): 3696-3704, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36745006

RESUMO

Given the synergy of optogenetics and bioimaging in neuroscience, it is possible for light to simultaneously modulate and visualize synaptic events of optoelectronic synaptic devices, which are building blocks of a neuromorphic computing system with optoelectronic integration. Here we demonstrate the realization of the simultaneous modulation and visualization of synaptic events by using optically stimulated synaptic devices based on the heterostructure of fluorescent silicon quantum dots (Si QDs) and monolayer molybdenum disulfide (MoS2). The charge-transfer-enabled photogating effect of the Si QDs/MoS2 heterostructure leads to the nonvolatility of the synaptic devices, which exhibit important synaptic functionalities and synchronous fluorescence upon optical stimulation. An array of the Si QDs/MoS2 optoelectronic synaptic devices is well-employed to mimic robust neural population coding. Defective devices in this array may be pinpointed by the absence of their fluorescence. This work has an important implication for the development of synaptic devices facilitating the system-level diagnosis and device-level positioning of a neuromorphic computing system.

2.
Sci Rep ; 8(1): 7396, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29743558

RESUMO

In the present study, a novel method has been carried out to grow tungsten (W) doped molybdenum disulfide (MoS2) on the graphene transferred TEM grid in a chemical vapor deposition (CVD) setup. Tungsten trioxide (WO3) has been used as a source for 'W' while 'Mo' has been derived from Mo based substrate. Different experimental parameters were used in this experiment. Higher gas flow rate decreases the size of the sample flake and on other side increases the dopant concentrations. The interaction mechanism between Mo, S, W and oxygen (O) have been explored. The influence of oxygen seems to be not avoidable completely which also imposes effective growth condition for the reaction of Mo with incoming sulfur atoms. The difference in the migration energies of Mo, WO3, S clusters on the graphene and the higher reactivity of Mo clusters over other possibly formed atomic clusters on the graphene leads to the growth of W doped MoS2 monolayers. Formation of MoS2 monolayer and the nature of edge doping of 'W' is explained well with the crystal model using underlying nucleation principles. We believe our result provide a special route to prepare W doped MoS2 on graphene substrate in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA