Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(20): 3428-3441, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37540231

RESUMO

Sentinel lymph node (SLN) biopsy plays a critical role in axillary staging of breast cancer. However, traditional SLN mapping does not accurately discern the presence or absence of metastatic disease. Detection of SLN metastasis largely hinges on examination of frozen sections or paraffin-embedded tissues post-SLN biopsy. To improve detection of SLN metastasis, we developed a second near-infrared (NIR-II) in vivo fluorescence imaging system, pairing erbium-based rare-earth nanoparticles (ErNP) with bright down-conversion fluorescence at 1,556 nm. To visualize SLNs bearing breast cancer, ErNPs were modified by balixafortide (ErNPs@POL6326), a peptide antagonist of the chemokine receptor CXCR4. The ErNPs@POL6326 probes readily drained into SLNs when delivered subcutaneously, entering metastatic breast tumor cells specifically via CXCR4-mediated endocytosis. NIR fluorescence signals increased significantly in tumor-positive versus tumor-negative SLNs, enabling accurate determination of SLN breast cancer metastasis. In a syngeneic mouse mammary tumor model and a human breast cancer xenograft model, sensitivity for SLN metastasis detection was 92.86% and 93.33%, respectively, and specificity was 96.15% and 96.08%, respectively. Of note, the probes accurately detected both macrometastases and micrometastases in SLNs. These results overall underscore the potential of ErNPs@POL6326 for real-time visualization of SLNs and in vivo screening for SLN metastasis. SIGNIFICANCE: NIR-IIb imaging of a rare-earth nanoprobe that is specifically taken up by breast cancer cells can accurately detect breast cancer macrometastases and micrometastases in sentinel lymph nodes.


Assuntos
Neoplasias da Mama , Linfonodo Sentinela , Animais , Camundongos , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Neoplasias da Mama/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Micrometástase de Neoplasia/patologia , Biópsia de Linfonodo Sentinela/métodos , Estadiamento de Neoplasias , Axila/patologia
2.
Adv Sci (Weinh) ; 10(10): e2205294, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721054

RESUMO

Breast-conserving surgery (BCS) is the predominant treatment approach for initial breast cancer. However, due to a lack of effective methods evaluating BCS margins, local recurrence caused by positive margins remains an issue. Accordingly, radiation therapy (RT) is a common modality in patients with advanced breast cancer. However, while RT also protects normal tissue and enhances tumor bed doses to improve therapeutic effects, current radiosensitizers cannot meet these urgent clinical needs. To address this, a novel self-assembled multifunctional nanoprobe (NP) gadolinium (Gd)-diethylenetriaminepentaacetic acid-human serum albumin (HSA)@indocyanine green-Bevacizumab (NPs-Bev) is synthesized to improve the efficacy of fluorescence-image-guided BCS and RT. Fluorescence image guidance of the second near infrared NP improves complete resection in tumor-bearing mice and accurately discriminates between benign and malignant mammary tissue in transgenic mice. Moreover, targeting tumors with NPs induces more reactive oxygen species under X-ray radiation therapy, which not only increases RT sensitivity, but also reduces tumor progression in mice. Interestingly, self-assembled NPs-Bev using HSA, the magnetic resonance contrast agent and Bevacizumab-targeting vascular growth factor A, which are clinically safe reagents, are safe in vitro and in vivo. Therefore, the novel self-assembled NPs provide a solid precision therapy platform to treat breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Bevacizumab/uso terapêutico , Verde de Indocianina/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
3.
Front Genet ; 13: 798170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368696

RESUMO

Background: In the latest rankings, breast cancer ranks first in incidence and fifth in mortality among female malignancies worldwide. Early diagnosis and treatment can improve the prognosis and prolong the survival of breast cancer (BC) patients. The NIMA-related kinase (NEK), a group of serine/threonine kinase, is a large and conserved gene family that includes NEK1-NEK11. The NEK plays a pivotal role in the cell cycle and microtubule formation. However, an integrative analysis of the effect and prognosis value of NEK family members on BC patients is still lacking. Methods: In this study, the expression profiles of NEK family members in BC and its subgroups were analyzed using UALCAN, GEPIA2, and Human Protein Atlas datasets. The prognostic values of NEK family members in BC were evaluated using the Kaplan-Meier plotter. Co-expression profiles and genetic alterations of NEK family members were analyzed using the cBioPortal database. The function and pathway enrichment analysis of the NEK family were performed using the WebGestalt database. The correlation analysis of the NEK family and immune cell infiltration in BC was conducted using the TIMER 2.0 database. Results: In this study, we compared and analyzed the prognosis values of the NEKs. We found that NEK9 was highly expressed in normal breast tissues than BC, and NEK2, NEK6, and NEK11 were significantly highly expressed in BC than adjacent normal tissues. Interestingly, the expression levels of NEK2, NEK6, and NEK10 were not only remarkably correlated with the tumor stage but also with the molecular subtype. Through multilevel research, we found that high expression levels of NEK1, NEK3, NEK8, NEK9, NEK10, and NEK11 suggested a better prognosis value in BC, while high expression levels of NEK2 and NEK6 suggested a poor prognosis value in BC. Conclusion: Our studies show the prognosis values of the NEKs in BC. Thus, we suggest that NEKs may be regarded as novel biomarkers for predicting potential prognosis values and potential therapeutic targets of BC patients.

5.
Front Oncol ; 11: 628814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249678

RESUMO

PURPOSE: The basic helix-loop-helix transcription factor (bHLH) transcription factor Twist1 plays a key role in embryonic development and tumorigenesis. p53 is a frequently mutated tumor suppressor in cancer. Both proteins play a key and significant role in breast cancer tumorigenesis. However, the regulatory mechanism and clinical significance of their co-expression in this disease remain unclear. The purpose of this study was to analyze the expression patterns of p53 and Twist1 and determine their association with patient prognosis in breast cancer. We also investigated whether their co-expression could be a potential marker for predicting patient prognosis in this disease. METHODS: Twist1 and mutant p53 expression in 408 breast cancer patient samples were evaluated by immunohistochemistry. Kaplan-Meier Plotter was used to analyze the correlation between co-expression of Twist1 and wild-type or mutant p53 and prognosis for recurrence-free survival (RFS) and overall survival (OS). Univariate analysis, multivariate analysis, and nomograms were used to explore the independent prognostic factors in disease-free survival (DFS) and OS in this cohort. RESULTS: Of the 408 patients enrolled, 237 (58%) had high mutant p53 expression. Two-hundred twenty patients (53.9%) stained positive for Twist1, and 188 cases were Twist1-negative. Furthermore, patients that co-expressed Twist1 and mutant p53 (T+P+) had significantly advanced-stage breast cancer [stage III, 61/89 T+P+ (68.5%) vs. 28/89 T-P- (31.5%); stage II, 63/104 T+P+ (60.6%)vs. 41/104 T-P- (39.4%)]. Co-expression was negatively related to early clinical stage (i.e., stages 0 and I; P = 0.039). T+P+ breast cancer patients also had worse DFS (95% CI = 1.217-7.499, P = 0.017) and OS (95% CI = 1.009-9.272, P = 0.048). Elevated Twist1 and mutant p53 expression predicted shorter RFS in basal-like patients. Univariate and multivariate analysis identified three variables (i.e., lymph node involvement, larger tumor, and T+P+) as independent prognostic factors for DFS. Lymph node involvement and T+P+ were also independent factors for OS in this cohort. The total risk scores and nomograms were reliable for predicting DFS and OS in breast cancer patients. CONCLUSIONS: Our results revealed that co-expression of mutant p53 and Twist1 was associated with advanced clinical stage, triple negative breast cancer (TNBC) subtype, distant metastasis, and shorter DFS and OS in breast cancer patients. Furthermore, lymph nodes status and co-expression of Twist1 and mutant p53 were classified as independent factors for DFS and OS in this cohort. Co-evaluation of mutant p53 and Twist1 might be an appropriate tool for predicting breast cancer patient outcome.

6.
Cell Death Dis ; 12(6): 502, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006834

RESUMO

Notch receptors (Notch1-4) play critical roles in tumorigenesis and metastasis of malignant tumors, including breast cancer. Although abnormal Notch activation is related to various tumors, the importance of single receptors and their mechanism of activation in distinct breast cancer subtypes are still unclear. Previous studies by our group demonstrated that Notch3 may inhibit the emergence and progression of breast cancer. PTEN is a potent tumor suppressor, and its loss of function is sufficient to promote the occurrence and progression of tumors. Intriguingly, numerous studies have revealed that Notch1 is involved in the regulation of PTEN through its binding to CBF-1, a Notch transcription factor, and the PTEN promoter. In this study, we found that Notch3 and PTEN levels correlated with the luminal phenotype in breast cancer cell lines. Furthermore, we demonstrated that Notch3 transactivated PTEN by binding CSL-binding elements in the PTEN promoter and, at least in part, inhibiting the PTEN downstream AKT-mTOR pathway. Notably, Notch3 knockdown downregulated PTEN and promoted cell proliferation and tumorigenesis. In contrast, overexpression of the Notch3 intracellular domain upregulated PTEN and inhibited cell proliferation and tumorigenesis in vitro and in vivo. Moreover, inhibition or overexpression of PTEN partially reversed the promotion or inhibition of cell proliferation induced by Notch3 alterations. In general, Notch3 expression positively correlated with elevated expression of PTEN, ER, lower Ki-67 index, and incidence of involved node status and predicted better recurrence-free survival in breast cancer patients. Therefore, our findings demonstrate that Notch3 inhibits breast cancer proliferation and suppresses tumorigenesis by transactivating PTEN expression.


Assuntos
Neoplasias da Mama/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Receptor Notch3/metabolismo , Animais , Neoplasias da Mama/genética , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Prognóstico , Análise de Sobrevida , Transfecção
7.
Front Oncol ; 11: 627713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854967

RESUMO

BACKGROUND AND OBJECTIVES: In China, over 90% of esophageal cancer (EC) cases are esophageal squamous cell carcinoma (ESCC). ESCC is a frequently malignant tumor with poor prognosis despite the development of comprehensive therapeutic strategies, for which there is still a lack of effective prognostic factors. Previous studies found that the abnormal expression of TRPC1 is closely related to the proliferation, invasion, metastasis, and differentiation of various tumors. However, the relationship between TRPC1 and ESCC is currently unclear. The present study aimed to clarify the clinical significance of TRPC1 and to preliminarily assess the molecular mechanism by which TRPC1 regulates cell proliferation, migration, and invasion in ESCC. MATERIALS AND METHODS: Immunohistochemistry (IHC) was used to determine the expression of TRPC1 and Ki-67 in 165 cases of ESCC. The correlations between TRPC1 expression and clinicopathological characteristics were determined, and both univariate and multivariate analyses were utilized to quantify the impact of TRPC1 expression on patient survival. Cell Counting Kit-8, scratch wound healing, and transwell assays were used to determine the effects of TRPC1 on proliferation, migration, and invasion in ESCC in vitro, respectively. RESULTS: The positive expression rate of TRPC1 showed significantly decreased in ESCC (45.50%) compared with the levels in normal esophageal mucosa (NEM; 80.80%) and high-grade intraepithelial neoplasia (HGIEN; 63.20%) (P<0.001). Higher expression rate of TRPC1 was associated with low lymph node metastasis (P<0.001), high differentiation (rs = 0.232, P=0.003), and low Ki-67 (rs = -0.492, P<0.001). We further revealed that low expression of TRPC1 was associated with poor prognosis (Disease-free survival, DFS: 95% CI=0.545-0.845, P=0.001; Overall survival, OS: 95% CI=0.553-0.891, P=0.004). Furthermore, we showed that downregulation of TRPC1 promoted the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line EC9706 in vitro. In contrast, overexpression of TRPC1 inhibited the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line KYSE150 (P<0.01), in a manner at least in part mediated through the AKT/p27 pathway. CONCLUSION: TRPC1 inhibited the proliferation, migration, and invasion of EC9706 and KYSE150 cells, at least, in part mediated through the AKT/p27 pathway in vitro. The downregulation of TRPC1 may be one of the most important molecular events in the malignant progression of ESCC. TRPC1 could be a new candidate tumor suppressor gene and a new prognostic factor of ESCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...