Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1907, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429257

RESUMO

Plants are capable of assembling beneficial rhizomicrobiomes through a "cry for help" mechanism upon pathogen infestation; however, it remains unknown whether we can use nonpathogenic strains to induce plants to assemble a rhizomicrobiome against pathogen invasion. Here, we used a series of derivatives of Pseudomonas syringae pv. tomato DC3000 to elicit different levels of the immune response to Arabidopsis and revealed that two nonpathogenic DC3000 derivatives induced the beneficial soil-borne legacy, demonstrating a similar "cry for help" triggering effect as the wild-type DC3000. In addition, an increase in the abundance of Devosia in the rhizosphere induced by the decreased root exudation of myristic acid was confirmed to be responsible for growth promotion and disease suppression of the soil-borne legacy. Furthermore, the "cry for help" response could be induced by heat-killed DC3000 and flg22 and blocked by an effector triggered immunity (ETI) -eliciting derivative of DC3000. In conclusion, we demonstrate the potential of nonpathogenic bacteria and bacterial elicitors to promote the generation of disease-suppressive soils.


Assuntos
Arabidopsis , Pseudomonas syringae , Animais , Estro , Temperatura Alta , Solo
2.
Nat Biomed Eng ; 8(4): 415-426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374224

RESUMO

The blood-brain barrier (BBB) restricts the systemic delivery of messenger RNAs (mRNAs) into diseased neurons. Although leucocyte-derived extracellular vesicles (EVs) can cross the BBB at inflammatory sites, it is difficult to efficiently load long mRNAs into the EVs and to enhance their neuronal uptake. Here we show that the packaging of mRNA into leucocyte-derived EVs and the endocytosis of the EVs by neurons can be enhanced by engineering leucocytes to produce EVs that incorporate retrovirus-like mRNA-packaging capsids. We transfected immortalized and primary bone-marrow-derived leucocytes with DNA or RNA encoding the capsid-forming activity-regulated cytoskeleton-associated (Arc) protein as well as capsid-stabilizing Arc 5'-untranslated-region RNA elements. These engineered EVs inherit endothelial adhesion molecules from donor leukocytes, recruit endogenous enveloping proteins to their surface, cross the BBB, and enter the neurons in neuro-inflammatory sites. Produced from self-derived donor leukocytes, the EVs are immunologically inert, and enhanced the neuronal uptake of the packaged mRNA in a mouse model of low-grade chronic neuro-inflammation.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Neurônios , RNA Mensageiro , Animais , Neurônios/metabolismo , Vesículas Extracelulares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Retroviridae/genética , Capsídeo/metabolismo , Leucócitos/metabolismo , Humanos , Camundongos Endogâmicos C57BL
3.
Phys Rev Lett ; 131(13): 136102, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37831989

RESUMO

Transverse spin of surface waves is a universal phenomenon which has recently attracted significant attention in optics and acoustics. It appears in gravity water waves, surface plasmon polaritons, surface acoustic waves, and exhibits remarkable intrinsic spin-momentum locking, which has found useful applications for efficient spin-direction couplers. Here we demonstrate, both theoretically and experimentally, that the transverse spin of surface elastic (Rayleigh) waves has an anomalous sign near the surface, opposite to that in the case of electromagnetic, sound, or water surface waves. This anomalous sign appears due to the hybrid (neither transverse nor longitudinal) nature of elastic surface waves. Furthermore, we show that this sign anomaly can be employed for the selective spin-controlled excitation of symmetric and antisymmetric Lamb modes propagating in opposite directions in an elastic plate. Our results pave the way for spin-controlled manipulation of elastic waves and can be important for a variety of areas, from phononic spin-based devices to seismic waves.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37611884

RESUMO

In photoperiod-sensitive wild animals, the secretion of melatonin (MT) is modulated by external photoperiod, and MT affects inflammation and the ageing process. The beneficial effects of MT in delaying the progress of ageing have been reported in laboratory mice and rats. However, little is known about MT in wild mammals. In the current study, we investigated energy metabolism, microbial community structure and colon homeostasis in ageing Mongolian gerbils (Meriones unguiculatus) through exogenous supplementation of MT to test the hypothesis that MT has beneficial effects on gut homeostasis in ageing gerbils. Exogenous MT supplementation had no effect on energy metabolism in Mongolian gerbils but reduced the levels of circulating tumor necrosis factor-α (TNF-α), immune globulin G (IgG) and corticosterone (CORT). The increase in the level of inflammation in ageing animals was related to changes in the structure and diversity of the gut microbiota. At the genus level, the relative abundance of Prevotella, Treponema, Corynebacterium, and Sphingomonas was increased in ageing animals and decreased significantly by the treatment of MT. Christensenella and Lactobacillus were attenuated in ageing animals, and tended to be enhanced by MT treatment. Functions related to glycosphingolipid biosynthesis-ganglio series and lipopolysaccharide biosynthesis (metabolisms of cofactors, vitamins and glycan) were increased in ageing animals and decreased significantly by the treatment of MT. Our data suggest that a supplement of MT could improve colon homeostasis through changing the composition of gut microbiota and reducing inflammation in ageing gerbils.


Assuntos
Melatonina , Camundongos , Animais , Ratos , Gerbillinae , Melatonina/farmacologia , Inflamação/tratamento farmacológico , Metabolismo Energético , Colo , Envelhecimento
5.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586060

RESUMO

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Assuntos
Transtornos do Olfato , Síndrome de Sjogren , Camundongos , Humanos , Animais , Olfato , Mucosa Olfatória/metabolismo , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Aquaporina 5/genética , Aquaporina 5/metabolismo , Transtornos do Olfato/genética , Transtornos do Olfato/metabolismo
6.
Front Neurosci ; 16: 1036872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466168

RESUMO

Numerous studies have demonstrated that type 2 diabetes (T2D) is closely linked to the occurrence of Alzheimer's disease (AD). Nevertheless, the underlying mechanisms for this association are still unknown. Insulin resistance (IR) hallmarked by hyperinsulinemia, as the earliest and longest-lasting pathological change in T2D, might play an important role in AD. Since hyperinsulinemia has an independent contribution to related disease progressions by promoting inflammation in the peripheral system, we hypothesized that hyperinsulinemia might have an effect on microglia which plays a crucial role in neuroinflammation of AD. In the present study, we fed 4-week-old male C57BL/6 mice with a high-fat diet (HFD) for 12 weeks to establish IR model, and the mice treated with standard diet (SD) were used as control. HFD led to obesity in mice with obvious glucose and lipid metabolism disorder, the higher insulin levels in both plasma and cerebrospinal fluid, and aberrant insulin signaling pathway in the whole brain. Meanwhile, IR mice appeared impairments of spatial learning and memory accompanied by neuroinflammation which was characterized by activated microglia and upregulated expression of pro-inflammatory factors in different brain regions. To clarify whether insulin contributes to microglial activation, we treated primary cultured microglia and BV2 cell lines with insulin in vitro to mimic hyperinsulinemia. We found that hyperinsulinemia not only increased microglial proliferation and promoted M1 polarization by enhancing the production of pro-inflammatory factors, but also impaired membrane translocation of glucose transporter 4 (GLUT4) serving as the insulin-responding glucose transporter in the processes of glucose up-taking, reduced ATP production and increased mitochondrial fission. Our study provides new perspectives and evidence for the mechanism underlying the association between T2D and AD.

7.
Nano Lett ; 22(20): 8304-8311, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36194390

RESUMO

Secondary lymphoid organs (SLOs) are an important target for mRNA delivery in various applications. While the current delivery method relies on the drainage of nanoparticles to lymph nodes by intramuscular (IM) or subcutaneous (SC) injections, an efficient mRNA delivery carrier for SLOs-targeting delivery by systemic administration (IV) is highly desirable but yet to be available. In this study, we developed an efficient SLOs-targeting carrier using phosphatidylserine (PS), a well-known signaling molecule that promotes the endocytic activity of phagocytes and cellular entry of enveloped viruses. We adopted these biomimetic strategies and added PS into the standard four-component MC3-based LNP formulation (PS-LNP) to facilitate the cellular uptake of immune cells beyond the charge-driven targeting principle commonly used today. As a result, PS-LNP performed efficient protein expression in both lymph nodes and the spleen after IV administration. In vitro and in vivo characterizations on PS-LNP demonstrated a monocyte/macrophage-mediated SLOs-targeting delivery mechanism.


Assuntos
Nanopartículas , Fosfatidilserinas , Nanopartículas/química , RNA Interferente Pequeno/genética , RNA Mensageiro/genética
8.
Viruses ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016441

RESUMO

Porcine viral diarrhea diseases affect the swine industry, resulting in significant economic losses. Porcine epidemic diarrhea virus (PEDV) genotypes G1 and G2, and groups A and C of the porcine rotavirus, are major etiological agents of severe gastroenteritis and profuse diarrhea, particularly among piglets, with mortality rates of up to 100%. Based on the high prevalence rate and frequent co-infection of PEDV, RVA, and RVC, close monitoring is necessary to avoid greater economic losses. We have developed a multiplex TaqMan probe-based real-time PCR for the rapid simultaneous detection and differentiation of PEDV subtypes G1 and G2, RVA, and RVC. This test is highly sensitive, as the detection limits were 20 and 100 copies/µL for the G1 and G2 subtypes of PEDV, respectively, and 50 copies/µL for RVA and RVC, respectively. Eighty-eight swine clinical samples were used to evaluate this new test. The results were 100% in concordance with the standard methods. Since reassortment between porcine and human rotaviruses has been reported, this multiplex test not only provides a basis for the management of swine diarrheal viruses, but also has the potential to impact public health as well.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Rotavirus , Doenças dos Suínos , Animais , Infecções por Coronavirus/veterinária , Diarreia/diagnóstico , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Rotavirus/genética , Rotavirus/isolamento & purificação , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/virologia
9.
Cell Death Differ ; 29(11): 2247-2261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538152

RESUMO

Immunotherapy has been widely utilized in multiple tumors, however, its efficacy in the treatment of triple-negative breast cancers (TNBC) is still being challenged. Meanwhile, functions and mechanisms of RNA binding proteins in regulating immunotherapy for TNBC remain largely elusive. Here we reported that the RNA binding protein RBMS1 is prevalent among immune-cold TNBC. Through a systematic shRNA-mediated screen, we found depletion of RBMS1 significantly reduced the level of programmed death ligand 1 (PD-L1) in TNBC. Clinically, RBMS1 was increased in breast cancer and its level was positively correlated to that of PD-L1. RBMS1 ablation stimulated cytotoxic T cell mediated anti-tumor immunity. Mechanistically, RBMS1 regulated the mRNA stability of B4GALT1, a newly identified glycosyltransferase of PD-L1. Depletion of RBMS1 destabilized the mRNA of B4GALT1, inhibited the glycosylation of PD-L1 and promoted the ubiquitination and subsequent degradation of PD-L1. Importantly, combination of RBMS1 depletion with CTLA4 immune checkpoint blockade or CAR-T treatment enhanced anti-tumor T-cell immunity both in vitro and in vivo. Together, our findings provided a new immunotherapeutic strategy against TNBC by targeting the immunosuppressive RBMS1.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Imunoterapia , Anticorpos/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA
10.
Appl Microbiol Biotechnol ; 106(7): 2557-2567, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35362719

RESUMO

D-Xylose is a key component of lignocellulosic biomass and the second-most abundant carbohydrate on the planet. As one of the most powerful cyclo-lipopeptide antibiotics, fengycin displays strong wide-spectrum antifungal and antiviral, as well as potential anti-cancer activity. Pyruvate is a key metabolite linking the biosynthesis of fatty acids and amino acids, the precursors for fengycin. In this study, the genes encoding the Dahms xylose-utilization pathway were integrated into the amyE site of Bacillus subtilis 168, and based on the metabolic characteristics of the Dahms pathway, the acetate kinase (ackA) and lactate dehydrogenase (ldh) genes were knocked out. Then, the metabolic control module II was designed to convert glycolaldehyde, another intermediate of the Dahms pathway, in addition to pathways for the conversion of acetaldehyde into malic acid and oxaloacetic acid, resulting in strain BSU03. In the presence of module II, the content of acetic and lactic acid decreased significantly, and the xylose uptake efficiency increased. At the same time, the yield of fengycin increased by 87% compared to the original strain. Additionally, the underlying factors for the increase of fengycin titer were revealed through metabonomic analysis. This study therefore demonstrates that this regulation approach can not only optimize the intracellular fluxes for the Dahms pathway, but is also conducive to the synthesis of secondary metabolites similar to fengycin. KEY POINTS: • The expression and effect of the Dahms pathway on the synthesis of fengycin in Bacillus subtilis 168. • The expression of regulatory module II can promote the metabolic rate of the Dahms pathway and increase the synthesis of the fengycin.


Assuntos
Lipopeptídeos , Xilose , Antifúngicos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Lipopeptídeos/metabolismo , Xilose/metabolismo
11.
Front Psychol ; 13: 838811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386897

RESUMO

Background: Fatigue is an important factor for the safety of ships. In order to alleviate fatigue of the seafarers, the STCW Convention (International Convention on Standards of Training, Certification, and Watchkeeping for Seafarers) has made many regulations on the working time of seafarers. At present, if a crew member takes only one day off at home before returning to work on the ship, the working time on the ship must be re-calculated again. If the time spent at home is not sufficient to allow the crew to recover, the regulations of only stipulating the working time, not stipulating the home vacation time, cannot guarantee the crew's fatigue been well controlled. The aim of present study is to explore the relationship between vacation schedule and fatigue of the seafarers. Methods: In present study, a simplified stress scale developed by the Ministry of Labor of Japan has been used as a measurement tool. The method of stratified sampling was adopted. Data collection mainly came from domestic ocean-going seafarers (n = 165). Analysis was conducted using the Cross (chi-square) analysis and hierarchical multiple regression analysis methods. Results: We found that there was no difference between crew members of different positions in terms of average vacation time and on-board service time (p > 0.05). The length of last vacation time and this service time for seafarers of different positions showed obvious differences (p < 0.01). The rank has a significant effect on the length of the last vacation (χ2 = 101.560, p = 0.000 < 0.01) and the length of this service time (χ2 = 75.624, p = 0.000 < 0.01). Also, the results showed that there was a significant negative correlation between the duration of vacation and overall fatigue (t = -7.160, p = 0.000 < 0.01), while there was a significant positive correlation between the length of service time on board and overall fatigue (t = 3.474, p = 0.001 < 0.01). Conclusion: The results indicated that a reasonable vacation schedule was crucial for the relief of the seafarers' fatigue, and also played a positive role in the state of working on the ship again.

12.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34609966

RESUMO

Ferroptosis, an iron-dependent nonapoptotic cell death, is a highly regulated tumor suppressing process. However, functions and mechanisms of RNA-binding proteins in regulation of evasion of ferroptosis during lung cancer progression are still largely unknown. Here, we report that the RNA-binding protein RBMS1 participates in lung cancer development via mediating ferroptosis evasion. Through an shRNA-mediated systematic screen, we discovered that RBMS1 is a key ferroptosis regulator. Clinically, RBMS1 was elevated in lung cancer and its high expression was associated with reduced patient survival. Conversely, depletion of RBMS1 inhibited lung cancer progression both in vivo and in vitro. Mechanistically, RBMS1 interacted with the translation initiation factor eIF3d directly to bridge the 3'- and 5'-UTR of SLC7A11. RBMS1 ablation inhibited the translation of SLC7A11, reduced SLC7A11-mediated cystine uptake, and promoted ferroptosis. In a drug screen that targeted RBMS1, we further uncovered that nortriptyline hydrochloride decreased the level of RBMS1, thereby promoting ferroptosis. Importantly, RBMS1 depletion or inhibition by nortriptyline hydrochloride sensitized radioresistant lung cancer cells to radiotherapy. Our findings established RBMS1 as a translational regulator of ferroptosis and a prognostic factor with therapeutic potential and clinical value.


Assuntos
Sistema y+ de Transporte de Aminoácidos/genética , Proteínas de Ligação a DNA/fisiologia , Neoplasias Pulmonares/patologia , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Animais , Linhagem Celular Tumoral , Ferroptose , Células HEK293 , Humanos , Neoplasias Pulmonares/radioterapia , Camundongos , Proteínas Proto-Oncogênicas c-ets/fisiologia , Tolerância a Radiação , Fatores de Transcrição/fisiologia
13.
Nutr Metab (Lond) ; 18(1): 86, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530850

RESUMO

BACKGROUND: Precocious puberty is frequently associated with obesity, which will lead to long-term effects, especially on growth and reproduction. However, the effect of precocious puberty on children's neurodevelopment is still unknown. OBJECTIVES: Here we evaluated the effect of High fat diet (HFD)-induced precocious puberty on neurodevelopment and behaviors of animals. METHODS: Ovaries sections were stained with hematoxylin-eosin (H&E) using standard techniques. Behavioral tests included elevated plus maze (EPM), open field exploration, Y-Maze, marble burying test, and novelty- suppressed feeding. The expression of genes related to puberty and neural development was detected by immunohistochemistry and Western blot. RESULTS: Our results showed HFD-induced precocious puberty increased the risk-taking behavior and decreased memory of mice. The content of Tyrosine hydroxylase (TH) and Arginine vasopressin (AVP) in hypothalamus were higher in HFD group than control group. Although the recovery of normal diet will gradually restore the body fat and other physiological index of mice, the anxiety increases in adult mice, and the memory is also damaged. CONCLUSIONS: These findings describe the sensitivity of mice brain to HFD-induced precocious puberty and the irrecoverability of neural damage caused by precocious puberty. Therefore, avoiding HFD in childhood is important to prevent precocious puberty and neurodevelopmental impairment in mice.

14.
Front Microbiol ; 12: 684193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122395

RESUMO

Ascomycin (FK520) is a multifunctional antibiotic produced by Streptomyces hygroscopicus var. ascomyceticus. In this study, we demonstrated that the inactivation of GlnB, a signal transduction protein belonging to the PII family, can increase the production of ascomycin by strengthening the supply of the precursors malonyl-CoA and methylmalonyl-CoA, which are produced by acetyl-CoA carboxylase and propionyl-CoA carboxylase, respectively. Bioinformatics analysis showed that Streptomyces hygroscopicus var. ascomyceticus contains two PII family signal transduction proteins, GlnB and GlnK. Protein co-precipitation experiments demonstrated that GlnB protein could bind to the α subunit of acetyl-CoA carboxylase, and this binding could be disassociated by a sufficient concentration of 2-oxoglutarate. Coupled enzyme activity assays further revealed that the interaction between GlnB protein and the α subunit inhibited both the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, and this inhibition could be relieved by 2-oxoglutarate in a concentration-dependent manner. Because GlnK protein can act redundantly to maintain metabolic homeostasis under the control of the global nitrogen regulator GlnR, the deletion of GlnB protein enhanced the supply of malonyl-CoA and methylmalonyl-CoA by restoring the activity of acetyl-CoA carboxylase and propionyl-CoA carboxylase, thereby improving the production of ascomycin to 390 ± 10 mg/L. On this basis, the co-overexpression of the ß and ε subunits of propionyl-CoA carboxylase further increased the ascomycin yield to 550 ± 20 mg/L, which was 1.9-fold higher than that of the parent strain FS35 (287 ± 9 mg/L). Taken together, this study provides a novel strategy to increase the production of ascomycin, providing a reference for improving the yield of other antibiotics.

15.
Int J Neuropsychopharmacol ; 24(8): 666-676, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34000028

RESUMO

BACKGROUND: The restraint water immersion stress (RWIS) model includes both psychological and physical stimulation, which may lead to gastrointestinal disorders and cause gastric mucosal damage. The ventrolateral periaqueductal gray (VLPAG) contributes to gastrointestinal function, but whether it is involved in RWIS-induced gastric mucosal damage has not yet been reported. METHODS: The expression of glial fibrillary acidic protein, neuronal c-Fos, and phosphorylated extracellular signal regulated kinase 1/2 in the VLPAG after RWIS was assessed using western blotting and immunocytochemical staining methods. Lateral ventricle injection of astrocytic toxin L-a-aminoadipate and treatment with extracellular signal-regulated kinase (ERK)1/2 signaling pathway inhibitor PD98059 were further used to study protein expression and distribution in the VLPAG after RWIS. RESULTS: The expression of c-Fos, glial fibrillary acidic protein, and phosphorylated extracellular signal regulated kinase 1/2 in the VLPAG significantly increased following RWIS and peaked at 1 hour after RWIS. Lateral ventricle injection of the astrocytic toxin L-a-aminoadipate significantly alleviated gastric mucosal injury and decreased the activation of neurons and astrocytes. Treatment with the ERK1/2 signaling pathway inhibitor PD98059 obviously suppressed gastric mucosal damage as well as the RWIS-induced activation of neurons and astrocytes in the VLPAG. CONCLUSIONS: These results suggested that activation of VLPAG neurons and astrocytes induced by RWIS through the ERK1/2 signaling pathway may play a critical role in RWIS-induced gastric mucosa damage.


Assuntos
Astrócitos/fisiologia , Mucosa Gástrica/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Gastropatias , Estresse Psicológico , Animais , Astrócitos/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Ratos , Ratos Wistar , Restrição Física , Gastropatias/etiologia , Gastropatias/metabolismo , Gastropatias/fisiopatologia , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
16.
J Antibiot (Tokyo) ; 74(6): 397-406, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33658638

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen that frequently causes nosocomial urinary tract infection (UTI). The aim of this study was to investigate the prevalence of extended-spectrum ß-lactamases (ESBL), plasmid-mediated quinolone resistance (PMQR) genes, in acquired AmpC (ac-AmpC) ß­lactamase­producing K. pneumoniae isolates from patients with nosocomial UTI and to characterize the transmissibility of plasmids harbouring multiple resistance genes. From January 2017 to June 2018, we collected 46 ac-AmpC-producing K. pneumoniae isolates causing UTI from a tertiary care hospital in China. Antimicrobial susceptibility assays showed that non-susceptibility of all isolates to third-generation cephalosporin and fluoroquinolone was very high (>80%). Diverse types of ESBLs and PMQR genes, including blaSHV-12 (n = 23), blaSHV-27 (n = 1), blaSHV-28 (n = 2), blaSHV-33 (n = 4), blaCTX-M-3 (n = 24), blaCTX-M-14 (n = 6), blaCTX-M-15 (n = 6), blaCTX-M-22 (n = 1) and blaOXA-10 (n = 26), as well as qnrA (n = 2), qnrB (n = 39) and qnrS (n = 2) genes were identified amongst AmpC-producing K. pneumoniae isolates. The blaAmpC, qnrB and several ESBLs genes from six strains harbouring multiple AmpC (at least two ampC) were co-transferrable to recipients via conjugation or electroporation, with IncFIA, IncFIB and IncA/C being the dominant replicons. Conserved genetic context associated with the mobilization of blaampC genes was detected. Forty-six isolates were categorized into 25 enterobacterial repetitive intergenic consensus (ERIC) types, and the 6 isolates harbouring multiple AmpC genes belonged to ST1 lineage. This work reports that the emergence of plasmids co-harbouring multiple resistance determinants and mediating the local prevalence in K. pneumoniae causing UTI in China.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Infecções Urinárias/microbiologia , beta-Lactamases/genética , Proteínas de Bactérias/metabolismo , Técnicas de Tipagem Bacteriana , China , Genes Bacterianos , Variação Genética , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/genética , Prevalência , Fatores de Virulência/genética , beta-Lactamases/metabolismo
17.
Stem Cell Res Ther ; 12(1): 16, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413641

RESUMO

BACKGROUND: Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated. We aimed to study the relative importance of the hypothalamic-pituitary-adrenal (HPA) axis in the glucocorticoid-induced BMSPC mobilization. METHODS: The circulating mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were examined in Crh (+/+, -/-) mice after running stress or glucocorticoid mini-infusion. The MSCs and EPCs were investigated ex vivo after treatment with glucocorticoid and glucocorticoid receptor (GR) antagonist, RU486. The expression of chemotaxis receptors, N-formyl peptide receptor (FPR), and Cys-X-Cys receptor 4 (CXCR4) of MSCs and EPCs as well as their colocalization were investigated after treatment with glucocorticoid, glucocorticoid receptor (GR) antagonist (RU486), and FPR antagonist (Cyclosporin H). RESULTS: Forced running stress increased circulating MSCs and EPCs in mice, which was blunted when Crh was knocked out, and positively related to the levels of serum glucocorticoid. Prolonged glucocorticoid mini-infusion imitated the stress-induced increase in circulating MSCs and EPCs in Crh+/+ mice and rescued the impaired mobilization in circulating MSCs and EPCs in Crh-/- mice. Meanwhile, glucocorticoid promoted the chemotaxis of MSCs and EPCs ex vivo via GR, inhibited by RU486 (10 µM). Concurrently, glucocorticoid increased the expression of FPR of MSCs and EPCs, but inhibited their expression of CXCR4, followed by their changing colocalization in the cytoplasm. The GC-induced colocalization of FPR and CXCR4 was blunted by Cyclosporin H (1 µM). CONCLUSION: Glucocorticoid-induced CXCR4-FPR responsiveness selectively guides the mobilization of BMSPCs, which is essential to functional tissue repair. Schematic view of the role of glucocorticoid on the mobilization of bone marrow-derived stem/progenitor cells subsets in the present study. The HPA axis activation promotes the release of glucocorticoid, which regulates the directional migration of MSCs and EPCs mainly via GR. The possible mechanisms refer to the signal coupling of FPR and CXCR4. Their two-sided changes regulated by glucocorticoid are involved in the egress of MSCs and EPCs from BM, which is helpful for wound healing. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells.


Assuntos
Glucocorticoides , Células-Tronco Mesenquimais , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Glucocorticoides/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
18.
Infect Drug Resist ; 14: 5639-5650, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992390

RESUMO

PURPOSE: Antibiotic resistance is a growing health crisis that is further complicated by treatment failures caused by bacteria that exhibit heterogeneous susceptibility to antibiotics. The aim of this study was to describe imipenem (IPM)-heteroresistant strains among multidrug-resistant (MDR) ESBL/AmpC-producing Klebsiella pneumoniae clinical isolates, investigate their molecular phenotypic characteristics, and elucidate the outcome of antibiotic treatment in mice infected with the heteroresistant isolates. MATERIALS AND METHODS: Antimicrobial susceptibility of K. pneumoniae isolates was determined by the disk diffusion and E-test methods. Heteroresistance to IPM was confirmed by population analysis profile (PAP) assays. PCR and sequencing were employed to detect MDR determinants. Molecular differences between the susceptible and resistant subpopulations were evaluated by sequencing and quantitative real-time reverse transcription PCR (qRT-PCR) analysis. The effect of the carbapenem-heteroresistant strains on antibiotic treatment was assessed using a mouse model of peritonitis with heteroresistant K. pneumoniae and subsequent treatment with IPM. RESULTS: In total, 37 MDR ESBL/AmpC-producing clinical isolates of K. pneumoniae were identified between September 2018 and December 2019. These strains were notably resistant to conventional antimicrobials other than carbapenems. Among the isolates, three strains exhibited heteroresistance to IPM and carried several ESBL and/or AmpC genes. Mice infected with a lethal dose of any of the three heteroresistant isolates were unable to survive in the presence of IPM treatment, as the percentage of the IPM-resistant subpopulation of each strain was increased in the peritoneum of these mice at 24 h after infection. The resistant subpopulation of the strains presented pulsed-field gel electrophoresis (PFGE) profiles that were identical to those of the susceptible subpopulation, but ompK36 porin showed a reduction in gene expression (0.09- to 0.50-fold) in the resistant subpopulation. CONCLUSION: Carbapenem-heteroresistant strains were present among the MDR K. pneumoniae isolates producing ESBL/AmpC ß-lactamases, and these heteroresistant strains failed IPM therapy in experimentally infected mice.

19.
Sci Transl Med ; 12(556)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32801144

RESUMO

Activation of the stimulator of interferon gene (STING) pathway within the tumor microenvironment has been shown to generate a strong antitumor response. Although local administration of STING agonists has promise for cancer immunotherapy, the dosing regimen needed to achieve efficacy requires frequent intratumoral injections over months. Frequent dosing for cancer treatment is associated with poor patient adherence, with as high as 48% of patients failing to comply. Multiple intratumoral injections also disrupt the tumor microenvironment and vascular networks and therefore increase the risk of metastasis. Here, we developed microfabricated polylactic-co-glycolic acid (PLGA) particles that remain at the site of injection and release encapsulated STING agonist as a programmable sequence of pulses at predetermined time points that mimic multiple injections over days to weeks. A single intratumoral injection of STING agonist-loaded microparticles triggered potent local and systemic antitumor immune responses, inhibited tumor growth, and prolonged survival as effectively as multiple soluble doses, but with reduced metastasis in several mouse tumor models. STING agonist-loaded microparticles improved the response to immune checkpoint blockade therapy and substantially decreased the tumor recurrence rate from 100 to 25% in mouse models of melanoma when administered during surgical resection. In addition, we demonstrated the therapeutic efficacy of STING microparticles on an orthotopic pancreatic cancer model in mice that does not allow multiple intratumoral injections. These findings could directly benefit current STING agonist therapy by decreasing the number of injections, reducing risk of metastasis, and expanding its applicability to hard-to-reach cancers.


Assuntos
Glicóis , Proteínas de Membrana , Animais , Humanos , Imunoterapia , Camundongos , Recidiva Local de Neoplasia , Microambiente Tumoral
20.
Artigo em Inglês | MEDLINE | ID: mdl-32445660

RESUMO

Researchers have made considerable progress in elucidating psychological and exercise correlates of major depressive disorder (MDD). However, as the largest immune organ, far less is known about the role of gastrointestinal (GI) tract in the therapeutic mechanisms of exercise in MDD. In addition to the sites of the digestive tract that absorb nutrients, the GI tract also serves as a protective barrier against organisms. Inflammation and other consequences caused by disrupted GI barrier integrity are considered to be one of the mechanisms of depression, and the gut-brain axis (GBA) plays a critical role in this process. In this work, we observed the depression-like behaviors, intestinal barrier, central and peripheral inflammation, and related neurotransmitters through exercise intervention in the chronic unpredictable mild stress (CUMS) model, aiming to clarify the mechanisms of exercise to improve depression through GBA. Our results revealed that, following increased expressions of pro-inflammatory factors in intestine of CUMS mice, the levels of pro-inflammatory factors were all significantly raised in serum and brain simultaneously. Further, glial cells were activated in visceral nervous system and its related brain regions at the same time, accompanied by lower expression of occludin in CUMS mice. Importantly, our findings provide the first evidence that eight weeks of running exercise effectively inhibited neuro-immune interactions along gut-brain-axis and contributed obvious improvement of intestinal epithelial barrier (IEB). Finally, multivariate analysis putatively highlighted the role of exercise-induced IEB protection on depression treatment. We hope that our findings could warrant further study of therapeutic mechanisms of exercise in depression, specifically in disentangling the roles of intestinal function and IEB protection, and for developing more targeted clinical depression interventions.


Assuntos
Encéfalo/fisiopatologia , Depressão/psicologia , Depressão/terapia , Terapia por Exercício , Trato Gastrointestinal/fisiopatologia , Aerobiose , Animais , Ansiedade/psicologia , Depressão/fisiopatologia , Elevação dos Membros Posteriores , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Neurotransmissores , Estresse Psicológico/psicologia , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...