Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Genomics ; 50(3): 192-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35940521

RESUMO

Many circular RNAs (circRNAs) are reported to be abnormally expressed during the progression of various tumors, and these circRNAs can be used as anti-tumor targets. Therefore, it is important to identify circRNAs that can be used effectively for the clinical diagnosis and treatment of colorectal cancer (CRC). Here, we report that hsa_Circ_0000826 (Circ_0000826), a circRNA with significantly reduced expression level in CRC tissues, is associated with a poor prognosis in patients. The silencing of Circ_0000826 promotes the proliferation of CRC cells. Conversely, the overexpression of Circ_0000826 restricted CRC cell proliferation both in vitro and in vivo. Furthermore, Circ_0000826 could target AU-rich element RNA-binding protein 1 (AUF1). AUF1, known as heterogeneous nuclear ribonucleoprotein D (hnRNP D), could bind to the c-MYC 3'-UTR and promote c-MYC expression. When Circ_0000826 binds to AUF1, it competitively inhibits the binding of AUF1 to the c-MYC 3'-UTR, which inhibits the c-MYC expression and cell proliferation. These results provide novel insights into the functional mechanism of Circ_0000826 action in CRC progression and indicate its potential use as a therapeutic target in CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , RNA Circular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , MicroRNAs/genética
2.
Chin Neurosurg J ; 8(1): 7, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35361282

RESUMO

BACKGROUND: Glioma is a common malignant brain tumor. The purpose of this study was to investigate the role of the transcription factor SPI1 in glioma. METHODS: SPI1 expression in glioma was identified using qRT-PCR and Western blotting. Cell proliferation was assessed using the CCK8 assay. Transwell and wound healing assays were utilized to evaluate cell migration. Additionally, cell cycle and apoptosis were detected using flow cytometry. RESULTS: We observed that the expression level of SPI1 was up-regulated in glioma tissues, compared to normal tissues. Furthermore, we found that SPI1 is able to promote proliferation and migration of glioma cells in vitro. Flow cytometry results demonstrate that, compared to si-NC cells, si-SPI1 cells stagnated in the G1 phase, and down-regulation of SPI1 expression is able to increase rates of apoptosis. Double luciferase activity and chromatin immunoprecipitation assay results indicated that SPI1 can bind to the promoter sites and promote the proliferation and migration of glioma cells by regulating the expression of oncogenic PAICS. CONCLUSIONS: Our results suggest that SPI1 can promote proliferation and migration of glioma. Furthermore, SPI1 can be utilized as a potential diagnostic marker and therapeutic target for glioma.

3.
Cell Stress Chaperones ; 27(3): 273-283, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355227

RESUMO

Compared with normal cells, tumor cells mainly obtain energy through aerobic glycolysis. Hexokinase 2 (HK2) plays a key role in the regulation of tumor cell aerobic glycolysis, and targeting HK2 has become a new strategy for cancer treatment. However, little is known about the role of HK2 in colon cancer and the regulation of its targeted inhibitors. In this study, we found that the expression of HK2 in colorectal cancer tissues was significantly higher than that in adjacent tissues, and the expression level of HK2 in metastatic colorectal cancer was further increased. Meanwhile, the expression level of HK2 was closely related to clinical TNM stage and outcome of colorectal cancer patients. We provide here evidence that HK2 inhibitor 3-Bromopyruvate acid (3-BP) can significantly inhibit the survival and proliferation of colon cancer cells, and induce apoptosis through mitochondrial apoptosis signaling pathway. In addition, we found that 3-BP can also induce endoplasmic reticulum stress in colon cancer cells, the mechanism may be through the increase of intracellular calcium concentration. In vitro and in vivo experiments showed that inhibition of endoplasmic reticulum stress could further increase the proliferation inhibition and apoptosis induced by 3-BP. Collectively, our results show that HK2 is highly expressed in colorectal cancer. 3-BP, an inhibitor of HK2, can induce apoptosis and endoplasmic reticulum stress in colon cancer cells. Endoplasmic reticulum stress plays a protective role in cell death induced by 3-BP. This result suggested that targeting HK2 and endoplasmic reticulum stress may be a valuable strategy in targeted and combination therapy of colon cancer.


Assuntos
Neoplasias do Colo , Hexoquinase , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Combinação de Medicamentos , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Glicólise/fisiologia , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos
4.
Front Genet ; 12: 647152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589110

RESUMO

Colorectal cancer (CRC) is one of the most prevalent malignant tumors worldwide. Colon adenocarcinoma (COAD) is the most common pathological type of CRC and several biomarkers related to survival have been confirmed. Yet, the predictive effect of a single gene biomarker is not enough. The tricarboxylic acid (TCA) cycle and carbon metabolism play an important role in tumors. Thus, we aimed to identify new gene signatures from the TCA cycle and carbon metabolism to better predict the survival of COAD. This study performed mRNA expression profiling in large COAD cohorts (n = 417) from The Cancer Genome Atlas (TCGA) database. Univariate Cox regression and multivariate Cox regression analysis were performed, and receiver operating characteristic (ROC) curve was used to screen the variable combinations model which is most relevant to patient prognosis survival mostly. Univariable or multivariate analysis results showed that SUCLG2, SUCLG1, ACLY, SUCLG2P2, ATIC and ACO2 have associations with survival in COAD. Combined with clinical variables, we confirmed model 1 (AUC = 0.82505), most relevant to patient prognosis survival. Model 1 contains three genes: SUCLG2P2, SUCLG2 and ATIC, in which SUCLG2P2 and SUCLG2 were low-expressed in COAD, however, ATIC was highly expressed, and the expressions above are related to stages of CRC. Pearson analysis showed that SUCLG2P2, SUCLG2 and ATIC were correlated in normal COAD tissues, while only SUCLG2P2 and SUCLG2 were correlated in tumor tissues. Finally, we verified the expressions of these three genes in COAD samples. Our study revealed a possible connection between the TCA cycle and carbon metabolism and prognosis and showed a TCA cycle and carbon metabolism related gene signature which could better predict survival in COAD patients.

5.
Front Immunol ; 12: 672356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936118

RESUMO

Cancer immunotherapy works by stimulating and strengthening the body's anti-tumor immune response to eliminate cancer cells. Over the past few decades, immunotherapy has shown remarkable efficacy in the treatment of cancer, particularly the success of immune checkpoint blockade targeting CTLA-4, PD-1 and PDL1, which has led to a breakthrough in tumor immunotherapy. Tumor neoantigens, a new approach to tumor immunotherapy, include antigens produced by tumor viruses integrated into the genome and antigens produced by mutant proteins, which are abundantly expressed only in tumor cells and have strong immunogenicity and tumor heterogeneity. A growing number of studies have highlighted the relationship between neoantigens and T cells' recognition of cancer cells. Vaccines developed against neoantigens are now being used in clinical trials in various solid tumors. In this review, we summarized the latest advances in the classification of immunotherapy and the process of classification, identification and synthesis of tumor-specific neoantigens, as well as their role in current cancer immunotherapy. Finally, the application prospects and existing problems of neoantigens were discussed.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Antígenos de Neoplasias/farmacologia , Vacinas Anticâncer/imunologia , Humanos , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...