Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Br J Pharmacol ; 180(14): 1878-1896, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36727262

RESUMO

BACKGROUND AND PURPOSE: Repeated amino acid sequences in proteins are widely found, and the glycine-serine-alanine repeat is an element with a general propensity to form ß-sheet aggregates as found in key pathological factors, in several neurodegenerative diseases. Such properties of this repeat may guide development of disease-modifying therapies for neurodegenerative disease. However, details of its role and underlying mechanism(s) remain largely unknown. EXPERIMENTAL APPROACH: Actions of specific glycine-serine-alanine repeat peptides (SNPs), especially SNP-9, on Alzheimer's disease (AD)-like abnormalities were evaluated in transgenic mice and Caenorhabditis elegans, and in rat and cell models. Entry of SNPs into the brain, SNP activity in neuronal cells and peptide entry into cells were analysed in vivo and in vitro. Cell-free systems and the yeast two-hybrid system were also used to explore possible targets of SNP-9, and interactions of potential targets with SNP-9 were confirmed in cell-based systems. KEY RESULTS: We first identified SNP-9 as a potent neuroprotective peptide with the activity to decrease oligomeric amyloid ß (Aß) via co-assembling with the toxic Aß oligomer to form hetero-oligomers. Also, calcyclin-binding protein was found to act as a SNP-9-binding protein, by screening of a human brain cDNA library. Such binding showed that SNP-9 could regulate the abnormal hyperphosphorylation of tau via calcyclin-binding protein. CONCLUSION AND IMPLICATIONS: Our study provides a foundation for development of SNPs, especially SNP-9, as potential therapeutic interventions for AD. We propose SNP-9 as a potential therapeutic agent for the treatment of AD.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Ratos , Animais , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Serina , Proteína A6 Ligante de Cálcio S100 , Camundongos Transgênicos , Caenorhabditis elegans/metabolismo
2.
Mol Microbiol ; 119(1): 126-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537557

RESUMO

In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II)2 Cys6 zinc cluster transcription factor, plays a key role in filamentation repression. FTS1 deletion caused hyperfilamentation whereas Fts1 overexpression drastically reduced filamentation. The expression of FTS1 is downregulated substantially during the yeast-to-filament transition. Transcriptome sequencing revealed that Fts1 represses 401 genes, including the filamentation-activating transcription factor genes MHY1, YlAZF1, and YlWOR4 and key cell wall protein genes. Tup1-Ssn6, a general transcriptional corepressor, is involved in the repression of many cellular functions in fungi. We show that both YlTup1 and YlSsn6 strongly repress filamentation in Y. lipolytica. YlTup1 and YlSsn6 together repress 1383 genes, including a large number of transcription factor and cell wall protein genes, which overlap substantially with Fts1-repressed genes. Fts1 interacts with both YlTup1 and YlSsn6, and LexA-Fts1 fusion represses a lexAop-promoter-lacZ reporter in a Tup1-Ssn6-dependent manner. Our findings suggest that Fts1 functions as a transcriptional repressor, directing the repression of target genes through the Tup1-Ssn6 corepressor.


Assuntos
Yarrowia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
3.
Acta Pharmacol Sin ; 44(5): 940-953, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36357669

RESUMO

Dopaminergic neuron degeneration is a hallmark of Parkinson's disease (PD). We previously reported that the inactivation of von Hippel‒Lindau (VHL) alleviated dopaminergic neuron degeneration in a C. elegans model. In this study, we investigated the specific effects of VHL loss and the underlying mechanisms in mammalian PD models. For in vivo genetic inhibition of VHL, AAV-Vhl-shRNA was injected into mouse lateral ventricles. Thirty days later, the mice received MPTP for 5 days to induce PD. Behavioral experiments were conducted on D1, D3, D7, D14 and D21 after the last injection, and the mice were sacrificed on D22. We showed that knockdown of VHL in mice significantly alleviated PD-like syndromes detected in behavioral and biochemical assays. Inhibiting VHL exerted similar protective effects in MPP+-treated differentiated SH-SY5Y cells and the MPP+-induced C. elegans PD model. We further demonstrated that VHL loss-induced protection against experimental parkinsonism was independent of hypoxia-inducible factor and identified the Dishevelled-2 (DVL-2)/ß-catenin axis as the target of VHL, which was evolutionarily conserved in both C. elegans and mammals. Inhibiting the function of VHL promoted the stability of ß-catenin by reducing the ubiquitination and degradation of DVL-2. Thus, in vivo overexpression of DVL-2, mimicking VHL inactivation, protected against PD. We designed a competing peptide, Tat-DDF-2, to inhibit the interaction between VHL and DVL-2, which exhibited pharmacological potential for protection against PD in vitro and in vivo. We propose the therapeutic potential of targeting the interaction between VHL and DVL-2, which may represent a strategy to alleviate neurodegeneration associated with PD.


Assuntos
Proteínas Desgrenhadas , Doença de Parkinson , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , beta Catenina/metabolismo , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Proteínas Desgrenhadas/efeitos dos fármacos , Proteínas Desgrenhadas/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Mamíferos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
4.
mSphere ; 7(6): e0045022, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36409080

RESUMO

The yeast-to-filament transition is an important cellular response to environmental stimulations in dimorphic fungi. In addition to activators, there are repressors in the cells to prevent filament formation, which is important to keep the cells in the yeast form when filamentation is not necessary. However, very few repressors of filamentation are known so far. Here, we identify a novel repressor of filamentation in the dimorphic yeast Yarrowia lipolytica, Fts2, which is a C2H2-type zinc finger transcription factor. We show that fts2Δ cells exhibited increased filamentation under mild filament-inducing conditions and formed filaments under non-filament-inducing conditions. We also show that Fts2 interacts with YlSsn6, component of the Tup1-Ssn6 transcriptional corepressor, and Fts2-LexA represses a lexAop-PYlACT1-lacZ reporter in a Tup1-Ssn6-dependent manner, suggesting that Fts2 has transcriptional repressor activity and represses gene expression via Tup1-Ssn6. In addition, we show that Fts2 represses a large number of cell wall protein genes and transcription factor genes, some of which are implicated in the filamentation response. Interestingly, about two-thirds of Fts2-repressed genes are also repressed by Tup1-Ssn6, suggesting that Fts2 may repress the bulk of its target genes via Tup1-Ssn6. Lastly, we show that Fts2 expression is downregulated in response to alkaline pH and the relief of negative control by Fts2 facilitates the induction of filamentation by alkaline pH. IMPORTANCE The repressors of filamentation are important negative regulators of the yeast-to-filament transition. However, except in Candida albicans, very few repressors of filamentation are known in dimorphic fungi. More importantly, how they repress filamentation is often not clear. In this paper, we report a novel repressor of filamentation in Y. lipolytica. Fts2 is not closely related in amino acid sequence to CaNrg1 and Rfg1, two major repressors of filamentation in C. albicans, yet it represses gene expression via the transcriptional corepressor Tup1-Ssn6, similar to CaNrg1 and Rfg1. Using transcriptome sequencing, we determined the whole set of genes regulated by Fts2 and identified the major targets of Fts2 repression, which provide clues to the mechanism by which Fts2 represses filamentation. Our results have important implications for understanding the negative control of the yeast-to-filament transition in dimorphic fungi.


Assuntos
Fatores de Transcrição , Yarrowia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/genética , Dedos de Zinco , Proteínas Correpressoras
5.
J Control Release ; 341: 511-523, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864117

RESUMO

The essential challenge of gene therapy is to develop safe and efficient vectors that escort genes to target sites. However, due to the cumbersome workflow of gene transfection into cells, successive gene loss occurs. This leads to considerable reductions in nuclear gene uptake, eventually causing low gene expression. Herein, we designed a gene vector named CA3S2 (C: N,N'-cystamine-bis-acrylamide [CBA], A: agmatine dihydrochloride [Agm], S: 4-(2-aminoethyl) benzenesulfonamide [ABS]) with excellent gene transfection ability. This vector can promote gene delivery to the nucleus via enhanced endoplasmic reticulum (ER) targeting through integrating and streamlining of the complex intracellular pathway. Briefly, ABS endowed CA3S2/DNA nanoparticles with not only a natural ER-targeting tendency attributed to the caveolae-mediated pathway but also direct receptor-binding capacity on the ER surface. Agm enabled CA3S2 to enhance lysosomal escape and nuclear uptake ability. The gene delivery efficiency of CA3S2 was significantly better than that of polyethyleneimine 25K (PEI 25K). Therefore, CA3S2 is a promising gene carrier, and the ER-targeting strategy involving intracellular pathway integration and streamlining has potential for gene therapy.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Núcleo Celular/metabolismo , Polietilenoimina/metabolismo , Transfecção
6.
mSphere ; 6(3)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34011684

RESUMO

Environmental pH influences cell growth and differentiation. In the dimorphic yeast Yarrowia lipolytica, neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Y. lipolytica Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of YlRIM101 severely impaired filamentation at alkaline pH, whereas the constitutively active YlRIM1011-330 mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene YlPHR1, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of MHY1 abolished them both, whereas the overexpression of MHY1 induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including YlPHR1 and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in Y. lipolyticaIMPORTANCE The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Candida albicans Here, we investigated the regulation of alkaline pH-induced filamentation in Yarrowia lipolytica, a dimorphic yeast distantly related to C. albicans Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Hifas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Yarrowia/crescimento & desenvolvimento , Yarrowia/genética , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hifas/genética , Yarrowia/fisiologia
7.
J Nanosci Nanotechnol ; 21(1): 43-56, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213612

RESUMO

The high gas content of deep coal seams is a driving force for the exploration and development of deep coalbed methane (CBM). The nanoscale pores, which are the main spaces for adsorption and storage of CBM, are closely related to the burial depth. Based on integrated approaches of vitrinite reflectance (Ro), maceral composition, scanning electron microscope (SEM), proximate analysis, fluid inclusion test, low-temperature N2 adsorption-desorption, and CH4 isothermal adsorption, the nanoscale pore structure of coals recovered at depths from 650 to 2078 m was determined, and its influence on the CH4 adsorption capacity was discussed. The results show that the coal rank has a good linear relationship with the current burial depth of the coal seams; that is, the influences of the burial depth on the coals can be reflected by the influences of the coal rank on the coals. With the increase in the coal rank, the moisture and volatile content decrease, and the fixed carbon content increases. The variation in the pore volume and specific surface area with the increase in the coal rank can be divided into two stages: the rapid decline stage (when 0.75% 1.0%, the FD of the micropores is close to 2. This indicates that with the increase in the degree of coalification, the surface of the micropores is simpler. The above results show that the gas adsorption capacity of coal first slightly decreases (when 0.75% < Ro < 1.0%) and then increases (when 1.0% < Ro < 1.35%), and the coincident results are shown in the Langmuir volume (VL) test results.

8.
Fungal Genet Biol ; 144: 103467, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33002606

RESUMO

Tos7 (Yol019w) is a Sur7/PalI family transmembrane protein in the budding yeast Saccharomyces cerevisiae. Since the deletion of TOS7 did not affect growth or cell morphology, the cellular roles of Tos7 have not been established previously. Here, we show that high-copy TOS7 expression suppressed the growth defect of the secretion-defective RGA1-C term-overexpressing mutant and sec15-1 mutant. Moreover, Tos7 physically interacted with Boi2 and the Rho GTPase Rho3, two key regulators of exocyst assembly, suggesting that Tos7 plays a role in secretion. We also show that the deletion of TOS7 rendered the cells more sensitive to the cell wall-disrupting agents Congo red and calcofluor white while high-copy TOS7 expression had an opposite effect, suggesting that Tos7 affects cell wall organization. Finally, we show that Tos7 localized to punctate patches on the plasma membrane that were largely co-localized with the plasma membrane microdomains named MCC (membrane compartment of Can1). Together, these results suggest that Tos7 contributes to cell surface-related functions. Tos7 is likely an auxiliary component of MCC/eisosome that specifically interacts with the secretory pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas rho de Ligação ao GTP/genética , Sistemas de Transporte de Aminoácidos Básicos/genética , Parede Celular/genética , Exocitose/genética , Regulação Fúngica da Expressão Gênica/genética , Proteínas de Membrana/genética , Proteínas de Transporte Vesicular/genética
9.
Curr Genet ; 66(6): 1101-1115, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32656574

RESUMO

Boi1 and Boi2 are paralogous proteins essential for bud formation in budding yeast. So far, the domains that target Boi1/Boi2 to the polarity sites and function in bud formation are not well understood. Here, we report that a coiled-coil domain of Boi2 cooperates with the adjacent PH domain to confer Boi2's bud-cortex localization and major function in cell growth. The PH domain portion of the PH-CC bi-domain interacts with the Rho GTPases Cdc42 and Rho3 and both interactions are independent of the GTP/GDP-bound state of each GTPase. Interestingly, high-copy RHO3 and BOI2 but not CDC42 suppressed the growth defect of RGA1-C538 overexpression and the sec15-1 mutant and this BOI2 function depends on RHO3, suggesting that Boi2 may function in the Rho3 pathway. The SAM domain of Boi2 plays an essential role in high-copy suppression of the two mutants as well as in the early bud-neck localization of Boi2. The SAM domain and the CC domain also interact homotypically. They are likely involved in the formation of Boi2-containing protein complex. Our results provide new insights in the localization and function of Boi2 and highlight the importance of the PH-CC bi-domain and the SAM domain in Boi2's localization and function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Polaridade Celular/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rho de Ligação ao GTP/genética , Sequência de Aminoácidos/genética , Fenótipo , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Motivo Estéril alfa/genética
10.
Theranostics ; 10(18): 8430-8445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32724479

RESUMO

A viewpoint considering Alzheimer's disease (AD) as "type 3 diabetes" emphasizes the pivotal role of dysfunctional brain energy metabolism in AD. The hormone fibroblast growth factor 21 (FGF21) is a crucial regulator in energy metabolism; however, our understanding of the therapeutic potential and mechanisms underlying the effect of FGF21 on neurodegeneration of AD is far from complete. Methods: To further elucidate the effect of FGF21 on AD-related neurodegeneration, we used APP/PS1 transgenic mice to assess the effects of FGF21 on memory dysfunction, amyloid plaque pathology and pathological tau hyperphosphorylation. We also established an in vitro system to mimic astrocyte-neuron communication and an in vivo model of acute injury. Based on the in vivo and in vitro models, we analyzed the neuroprotective actions of FGF21 and pathways related to astrocyte-neuron communication and further focused on the astrocyte-neuron lactate shuttle system. Results: Here, we report that FGF21 can ameliorate Alzheimer-like neurodegeneration in APP/PS1 transgenic mice. We detected defects in the astrocyte-neuron lactate shuttle system in the in vivo and in vitro models of AD and identified FGF21 as a neuroprotective molecule that can rescue these deficits. Administration of FGF21 can alleviate memory dysfunction, amyloid plaque pathology and pathological tau hyperphosphorylation, and the function of FGF21 in neurodegeneration is mediated in part by monocarboxylate transporters (MCTs). In vivo evidence also suggests that FGF21 acts centrally in mice to exert its effects on neurodegeneration and energy metabolism via its regulation of MCTs. Conclusions: These results suggest that FGF21 alters metabolic parameters to mediate its neuroprotective functions. Modulation of the astrocyte-neuron lactate shuttle system can be one of the most efficient strategies for FGF21 in Alzheimer-like degeneration and contributes to improvements in brain metabolic defects and amyloid ß-induced cytotoxicity. Our findings provide insights into the mechanisms underlying the effects of FGF21 on neurodegeneration and brain energy metabolism and suggest that FGF21 may have therapeutic value in the treatment of AD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Ácido Láctico/metabolismo , Neuroproteção , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Astrócitos/metabolismo , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Presenilina-1/genética , Cultura Primária de Células , Ratos
11.
Sci Adv ; 6(22): eaba3167, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32518825

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous and fatal disease. However, IPF treatment has been limited by the low drug delivery efficiency to lungs and dysfunctional "injured" type II alveolar epithelial cell (AEC II). Here, we present surface-engineered nanoparticles (PER NPs) loading astaxanthin (AST) and trametinib (TRA) adhered to monocyte-derived multipotent cell (MOMC) forming programmed therapeutics (MOMC/PER). Specifically, the cell surface is designed to backpack plenty of PER NPs that reach directly to the lungs due to the homing characteristic of the MOMC and released PER NPs retarget injured AEC II after responding to the matrix metalloproteinase-2 (MMP-2) in IPF tissues. Then, released AST can enhance synergetic effect of TRA for inhibiting myofibroblast activation, and MOMC can also repair injured AEC II to promote damaged lung regeneration. Our findings provide proof of concept for developing a strategy for cell-mediated lung-targeted delivery platform carrying dual combined therapies to reverse IPF.


Assuntos
Fibrose Pulmonar Idiopática , Células Epiteliais Alveolares/metabolismo , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Monócitos/metabolismo
12.
J Control Release ; 321: 629-640, 2020 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-32135224

RESUMO

Liver fibrosis leads to over one million deaths annually worldwide. Hepatic stellate cells (HSCs) have been identified as the main executors of liver fibrosis. Unfortunately, no drug has yet been approved for clinical use against liver fibrosis, largely because the tested drugs have been unable to access HSCs and efficiently remove the collagen accumulation involved in fibrogenesis. Here, we designed an efficient HSC-targeting lipid delivery system that carried dual siRNAs intended to both inhibit collagen synthesis and promote collagen degradation, with the goal of realizing enhanced anti-liver fibrosis by bidirectional regulation of collagen accumulation. The delivery system was constructed by using amphiphilic cationic hyperbranched lipoids (C15-PA) for siRNA complexation and helper lipoids (cholesterol-polyethylene glycol-vitamin A, Chol-PEG-VA) for HSCs targeting. The generated vitamin A-decorated and hyperbranched lipoid-based lipid nanoparticles (VLNPs) showed excellent gene-binding ability and transfection efficiency, and enhanced the delivery of siRNAs to HSCs. Fibrotic mice treated with dual siRNA-loaded VLNPs showed a great reduction in the collagen accumulation seen in this model; the enhanced effect of bidirectional regulation reduced the collagen accumulation level in treated mice to almost that seen in normal mice. There was no notable sign of toxicity or tissue inflammation in mice exposed to repeated intravenous administration of the dual siRNA-loaded VLNPs. In conclusion, our results indicate that biocompatible VLNPs designed to exploit precise targeting and an effective bidirectional regulation strategy hold promise for treating liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Nanopartículas , Animais , Colágeno , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/terapia , Camundongos , RNA Interferente Pequeno
13.
Curr Genet ; 66(1): 245-261, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31321487

RESUMO

Msn2/Msn4-family zinc finger transcription factors play important roles in stress response in yeast. However, some members of this family show significant functional divergence in different species. Here, we report that in the dimorphic yeast Yarrowia lipolytica, the Msn2/Msn4-like protein Mhy1 is a key regulator of yeast-to-hypha dimorphic transition but not stress response. Both MHY1 deletion and overexpression affect filamentation. In contrast, YlMsn4, the other Msn2/Msn4-like protein, regulates tolerance to acid-induced stress. We show that MHY1 has an unusually long (about 3800 bp) promoter featuring an upstream located enhancer and a double stress response element (STRE) motif, the latter of which mediates Mhy1's regulation on its own transcription. Transcriptome profiling conducted in wild-type strain, mhy1Δ mutant and MHY1-overexpressing mutant revealed about 100 genes that are highly differentially expressed (≥ 5-fold) in each of the 2 mutants compared to the wild-type strain. The largest group of genes downregulated in mhy1Δ mutant encodes cell wall proteins or enzymes involved in cell wall organization, suggesting that Mhy1 may regulate dimorphic transition by controlling these cell wall genes. We confirmed that the genes YALI0C23452, YALI0C15268 and YALI0B09955 are directly regulated by Mhy1. We also characterized the Mhy1 consensus binding site as 5'-WNAGGGG-3' (W = A or T; N = A, T, G or C). These results provide new insight in the functions of Msn2/Msn4-family transcription factors in fungi and the mechanism by which Mhy1 regulates dimorphic transition.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Yarrowia/citologia , Yarrowia/fisiologia , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Mutação , Fenótipo , Ligação Proteica , Elementos de Resposta
14.
Redox Biol ; 22: 101133, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30785085

RESUMO

Our understanding of the mechanisms underlying process in Alzheimer's disease (AD) is far from completion and new therapeutic targets are urgently needed. Recently, the link between dementia and diabetes mellitus (DM) prompted us to search for new therapeutic strategies from glucose metabolism regulators for neurodegeneration. Previous studies have indicated that fibroblast growth factor 21 (FGF21), an attractive and potential therapeutic treatment for DM, may exert diverse effects in the central nervous system. However, the specific biological function and mechanisms of FGF21 on AD is still largely unknown. We report here a study in vivo and in vitro of the neuroprotective effects of FGF21 on cell apoptosis, tau hyperphosphorylation and oxidative stress induced by amyloid ß-peptide 25-35. In the present study, the results also further provided evidence for molecular mechanisms by which FGF21 exerted its beneficial effects in neuron and suggested that the regulation of protein phosphatase 2A / mitogen-activated protein kinases / hypoxia-inducible factor-1α pathway may play a key role in mediating the neuroprotective effects of FGF21 against AD-like pathologies.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Comportamento Animal , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/farmacologia , Glucose/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto , Memória , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Proteína Fosfatase 2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteínas tau/metabolismo
15.
Biochim Biophys Acta Mol Basis Dis ; 1865(2): 371-377, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30465895

RESUMO

Metabolic memory, which refers to diabetic stresses that persist after glucose normalization, is considered a major factor in addition to hyperglycaemia for diabetes complications, including dementia. We previously reported that glucagon-like peptide-1 receptor agonist (GLP-1RA) alleviated neuronal injury in diabetes-related dementia models. However, our understanding of the effects and mechanisms of GLP-1RA on metabolic memory-induced neurodegeneration are limited. The present study mainly focuses on the mechanisms of action of GLP-1RA on metabolic memory-induced neurotoxicity in vivo and in vitro. Thus, in this study, aiming at mimicking metabolic memory phenomena, in vivo and in vitro models were exposed to high glucose first and then normal glucose. We also used advanced glycation end products, which are key metabolic memory-related factors, to induce neuronal injury in vitro. Based on the models, here, we report that GLP-1RA alleviated neurodegeneration in db/db mice with normalized blood glucose levels controlled with metformin and neuronal damage induced by high glucose treatment followed by withdrawal. GLP-1RA ameliorated metabolic memory-induced amyloid-ß and tau pathologies in vivo and in vitro. Furthermore, the data suggested that GLP-1RA can protect neurons against metabolic memory via Forkhead box class O (FoxO) pathways, and silent information regulator 2 homolog 1-dependent deacetylation and protein kinase B-dependent phosphorylation of FoxO1 were involved in the mechanisms underlying protective effects. This study provides evidence of the beneficial effects of GLP-1RA on neuronal cell metabolic memory, as well as GLP-1 analogues and metformin combination therapy efficiency on cognitive impairment.


Assuntos
Diabetes Mellitus/metabolismo , Proteína Forkhead Box O1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Acetilação , Peptídeos beta-Amiloides/metabolismo , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Masculino , Memória , Camundongos Endogâmicos C57BL , Modelos Biológicos , Degeneração Neural/fisiopatologia , Neurônios/metabolismo , Células PC12 , Ratos , Sirtuína 1/metabolismo , Proteínas tau/metabolismo
16.
Acta Pharmacol Sin ; 38(9): 1269-1281, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28649127

RESUMO

Sepsis is a life-threatening health condition that is initially characterized by uncontrolled inflammation, followed by the development of persistent immunosuppression. YCP is a novel α-glucan purified from the mycelium of the marine fungus Phoma herbarum YS4108, which has displayed strong antitumor activity via enhancing host immune responses. In this study, we investigated whether YCP could influence the development of sepsis in a mouse model. Caecal ligation and puncture (CLP)-induced sepsis was established in mice that were treated with YCP (20 mg/kg, ip or iv) 2 h before, 4 and 24 h after the CLP procedure, and then every other day. YCP administration greatly improved the survival rate (from 39% to 72% on d 10 post-CLP) and ameliorated disease symptoms in the septic mice. Furthermore, YCP administration significantly decreased the percentage of myeloid-derived suppressor cells (MDSCs) in the lungs and livers, which were dramatically elevated during sepsis. In cultured BM-derived cells, addition of YCP (30, 100 µg/mL) significantly decreased the expansion of MDSCs; YCP dose-dependently decreased the phosphorylation of STAT3 and increased the expression of interferon regulatory factor-8 (IRF-8). When BM-derived MDSCs were co-cultured with T cells, YCP dose-dependently increased the production of arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS), and activated the NF-κB pathway. In addition, the effects of YCP on MDSCs appeared to be dependent on toll-like receptor (TLR) 4. These results reveal that YCP inhibits the expansion of MDSCs via STAT3 while enhancing their immunosuppressive function, partially through NF-κB. Our findings suggest that YCP protects mice against sepsis by regulating MDSCs. Thus, YCP may be a potential therapeutic agent for sepsis.


Assuntos
Células Supressoras Mieloides/efeitos dos fármacos , Polissacarídeos/farmacologia , Choque Séptico/tratamento farmacológico , Animais , Ascomicetos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Choque Séptico/metabolismo , Choque Séptico/patologia , Relação Estrutura-Atividade , Taxa de Sobrevida , Síndrome
17.
Sci Rep ; 7: 46347, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397880

RESUMO

Pertuzumab is an antihuman HER2 antibody developed for HER2 positive breast cancer. Glycosylation profiles are always the important issue for antibody based therapy. Previous findings have suggested the impact of glycosylation profiles on the function of antibodies, like pharmacodynamics, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, the roles of fucose and sialic acid in the function of therapeutic antibodies still need further investigation, especially the role of sialic acid in nonfucosylated antibodies. This study focused on the pharmacokinetic and pharmacodynamic properties of pertuzumab after glycoengineering. Herein, nonfucosylated pertuzumab was produced in CHOFUT8-/- cells, and desialylated pertuzumab was generated by enzymatic hydrolysis. Present data indicated that fucose was critical for ADCC activity by influencing the interaction between pertuzumab and FcγRIIIa, nevertheless removal of sialic acid increased the ADCC and CDC activity of pertuzumab. Meanwhile, regarding to sialic acid, sialidase hydrolysis directly resulted in asialoglycoprotein receptors (ASGPRs) dependent clearance in hepatic cells in vitro. The pharmacokinetic assay revealed that co-injection of asialofetuin can protect desialylated pertuzumab against ASGPRs-mediated clearance. Taken together, the present study elucidated the importance of fucose and sialic acid for pertuzumab, and also provided further understanding of the relationship of glycosylation/pharmacokinetics/pharmacodynamics of therapeutic antibody.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Engenharia de Proteínas , Animais , Citotoxicidade Celular Dependente de Anticorpos , Disponibilidade Biológica , Células CHO , Linhagem Celular Tumoral , Cricetulus , Glicosilação , Humanos , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes
18.
Mol Microbiol ; 104(4): 553-567, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28188651

RESUMO

The yeast-to-hypha dimorphic transition is important for survival under nutrient starvation in fungi. The oleaginous yeast Yarrowia lipolytica grows in the oval-shaped yeast form in glycerol media whereas it adopts a filamentous form in glucose media. It is not clear why this yeast responds differently to glycerol and glucose. Here, we show that glycerol blocks dimorphic transition even in the presence of glucose whereas glycerol depletion induces filamentous growth, suggesting that dimorphic transition is repressed in response to glycerol availability. We show that the repression of dimorphic transition in glycerol media is mediated by the TORC1-Sch9 signaling pathway as both TORC1 inhibition and the loss of YlSch9 cause hyperfilamentation. TORC1-Sch9 signaling inhibits the nuclear translocation of YlRim15, a protein kinase that positively regulates filamentous growth, preventing it from entering the nucleus to activate the transcription of genes implicated in filamentous growth. Interestingly, TORC1-Sch9 signaling appears not to inhibit YlRim15 in glucose media, which could explain why Y. lipolytica responds differently to glycerol and glucose. We identified MHY1, a transcription factor-encoding gene known to be critical for filamentous growth, as one target regulated by the TORC1-Sch9-Rim15 signaling pathway. Our results provide new insights in the regulation of dimorphic transition in yeast.


Assuntos
Hifas/metabolismo , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Yarrowia/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Glicerol/metabolismo , Hifas/crescimento & desenvolvimento , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento
19.
Biomed Pharmacother ; 88: 87-94, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28095357

RESUMO

Insufficient sialylation can result in rapid clearance of therapeutic glycoproteins by intracellular degradation, which is mainly mediated by asialoglycoprotein receptors (ASGPRs) on hepatic cells. In contrast, for glycoproteins, a long half-life is often related to high level of terminal sialic acid. These could be extremely important for insufficient sialylated biomedicines in clinic, and development of therapeutic glycoproteins in laboratory. However, how the desialylated glycoproteins are removed and how to evaluate the ASGPRs mediated endocytosis in vitro needs further investigate. Herein we described an integrative characterization of ASGPRs in vitro to elucidate its endocytosis properties. The endocytosis was determined by a fluorescence-based quantization method. The results showed that the ASGPRs could bind to poorly sialylated glycoproteins including asialofetuin and low sialylated recombinant Factor VIIa with a relatively higher ASGPRs binding affinity, and induce a more rapid endocytosis in vitro. Moreover, the mechanism under the internalization of ASGPRs was also investigated, which was found to depend on clathrin and caveolin. Utilizing the relative fluorescence quantification can be suitable for measurement of insufficient sialylated glycoprotein endocytosis and quality control of therapeutic glycoproteins, which could be useful for the understanding of the development of therapeutic glycoproteins.


Assuntos
Endocitose , Fluorometria/métodos , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Animais , Receptor de Asialoglicoproteína , Assialoglicoproteínas/metabolismo , Células CHO , Caveolinas/metabolismo , Clatrina/metabolismo , Cricetinae , Cricetulus , Dinaminas/metabolismo , Endossomos/metabolismo , Fator VIIa/metabolismo , Fetuínas/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescência , Células Hep G2 , Humanos , Lisossomos/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
20.
Fungal Genet Biol ; 99: 40-51, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28064039

RESUMO

GTPase-activating proteins (GAPs) play critical roles in the spatial and temporal control of small GTPases. The budding yeast Bem3 is a GAP for Cdc42, a Rho GTPase crucial for actin and septin organization. Bem3 localizes to the sites of polarized growth. However, the amino acid sequence determinants mediating recruitment of Bem3 to its physiological sites of action and those important for Bem3 function are not clear. Here, we show that Bem3's localization is guided by two distinct targeting regions-the PX-PH-domain-containing TD1 and the coiled-coil-containing TD2. TD2 localization is largely mediated by its interaction with the polarisome component Epo1 via heterotypic coiled-coil interaction. This finding reveals a novel role for the polarisome in linking Bem3 to its functional target, Cdc42. We also show that the coiled-coil domain of Bem3 interacts homotypically and this interaction is important for the regulation of Cdc42 by Bem3. Moreover, we show that overexpression of a longer version of the TD2 domain disrupts septin-ring assembly in a RhoGAP-independent manner, suggesting that TD2 may be capable of interacting with proteins implicated in septin-ring assembly. Furthermore, we show that the longer version of TD2 interacts with Kss1, a MAPK involved in filamentous growth. Kss1 is reported to localize mainly in the nucleus. We find that Kss1 also localizes to the sites of polarized growth and Bem3 interacts with Kss1 at the septin-ring assembly site. Our study provides new insights in Bem3's localization and function.


Assuntos
Proteínas de Transporte/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteínas de Transporte/metabolismo , Polaridade Celular/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/genética , Septinas/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...