Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636752

RESUMO

Nanoparticles-loaded bio-based polymers have emerged as a sustainable substitute to traditional oil-based packaging materials, addressing the challenges of limited recyclability and significant environmental impact. However, the functionality and efficiency of nanoparticles have a significant impact on the application of bio-based composite films. Herein, graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) coupled photocatalyst (g-C3N4-TiO2) was prepared by one-step calcination and introduced into chitosan (CS) and polyvinyl alcohol (PVA) solution to fabricate g-C3N4-TiO2/CS/PVA green renewable composite film via solution casting method. The results demonstrated the successful preparation of a Z-scheme heterojunction g-C3N4-TiO2 with exceptional photocatalytic activity. Furthermore, the incorporation of heterojunction enhanced mechanical properties, water barrier, and ultraviolet (UV) resistance properties of the fresh-keeping film. The g-C3N4-TiO2/CS/PVA composite film exhibited superior photocatalytic antibacterial preservation efficacy on strawberries under LED light, with a prolonged preservation time of up to 120 h, when compared to other films such as polyethylene (PE), CS/PVA, g-C3N4/CS/PVA, and TiO2/CS/PVA. In addition, the composite film has good recyclability and renewability. This work is expected to have great potential for low-cost fruit preservation and sustainable packaging, which also contributes to environmental protection.


Assuntos
Quitosana , Embalagem de Alimentos , Grafite , Álcool de Polivinil , Titânio , Titânio/química , Quitosana/química , Álcool de Polivinil/química , Embalagem de Alimentos/métodos , Grafite/química , Frutas/química , Catálise , Compostos de Nitrogênio/química , Antibacterianos/química , Antibacterianos/farmacologia
2.
Food Chem ; 446: 138880, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432140

RESUMO

Biodegradable food packaging films with good antimicrobial properties are highly sought after for prolonging the shelf-life of fruits and vegetables whilst minimizing waste streams originating from the food sector. In this work, a series of PBAT/PLA food packaging films containing sodium dehydroacetate-loaded diatomite (SD/D) as an antimicrobial agent were fabricated. Structural analyses showed that the sodium dehydroacetate was incorporated into the pores of the diatomite. A uniform dispersion of SD/D in the composite films effectively enhanced water and gas permeability, whilst also giving the films good mechanical properties. The slow release of SD endowed the composite films with long-acting antibacterial ability (>90 % bacteriostasis rate for E. coli and >85 % bacteriostasis rate for S. aureus). The composite films were able to effectively maintain the quality of banana fruits during storage at room temperature, encouraging their use in food applications where non-biodegradable petrochemical-derived packaging films have traditionally been used.


Assuntos
Anti-Infecciosos , Terra de Diatomáceas , Embalagem de Alimentos , Pironas , Antibacterianos/farmacologia , Antibacterianos/química , Água , Escherichia coli , Staphylococcus aureus , Poliésteres/química , Anti-Infecciosos/farmacologia
3.
Int J Biol Macromol ; 266(Pt 1): 131161, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547947

RESUMO

Cellulose acetate film, as a biodegradable and biomass-derived material, has great potential applications in food packaging. However, the poor mechanical and antibacterial properties limit its applications. Herein, a highly flexible carbon nitride-polyethylene glycol-cellulose acetate (CN-PEG-CA) film was successfully prepared by combining graphitic carbon nitride (g-C3N4) photocatalyst with cellulose acetate (CA). The g-C3N4 enables the film with antibacterial activity, as a green photocatalyst. PEG softens the rigid polymer CA and crosslinks CA, PEG, and g-C3N4 together by hydrogen bonding, as a flexible crosslinker. X-ray diffractometer (XRD), scanning electron microscope (SEM), and Fourier transform infrared spectrum (FT-IR) characterizations confirmed the successful preparation of the CN-PEG-CA film. The mechanical property tests demonstrated that adding PEG increased the elongation at break of the film by about 4 times. The composite film had high antibacterial activity, and the bactericidal rates on Escherichia coli and Staphylococcus aureus were 99.98 % and 99.89 %, respectively. It effectively extended the shelf life of strawberries to 96 h and effectively maintained the quality of strawberries during storage. After 96 h, the weight loss rate of strawberries packaged with 15 % CN-PEG-CA film was 21.83 %, vitamin C content was 45.47 %, titratable acidity content was 0.89 %, and color, hardness and total soluble solids were well maintained. And biocompatibility test results showed that the film was safe and nontoxic. From the ecological and economic point of view, the highly flexible and biodegradable films with efficient photocatalytic antibacterial activity synthesized in this paper have great potential in the field of food packaging.


Assuntos
Antibacterianos , Celulose , Celulose/análogos & derivados , Escherichia coli , Nitrilas , Polietilenoglicóis , Staphylococcus aureus , Celulose/química , Celulose/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Polietilenoglicóis/química , Nitrilas/química , Nitrilas/farmacologia , Catálise , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Embalagem de Alimentos/métodos , Frutas/química , Conservação de Alimentos/métodos , Testes de Sensibilidade Microbiana , Fragaria , Processos Fotoquímicos
4.
Environ Sci Ecotechnol ; 20: 100368, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38268554

RESUMO

The concentration of atmospheric CO2 has exceeded 400 ppm, surpassing its natural variability and raising concerns about uncontrollable shifts in the carbon cycle, leading to significant climate and environmental impacts. A promising method to balance carbon levels and mitigate atmospheric CO2 rise is through photocatalytic CO2 reduction. Titanium dioxide (TiO2), renowned for its affordability, stability, availability, and eco-friendliness, stands out as an exemplary catalyst in photocatalytic CO2 reduction. Various strategies have been proposed to modify TiO2 for photocatalytic CO2 reduction and improve catalytic activity and product selectivity. However, few studies have systematically summarized these strategies and analyzed their advantages, disadvantages, and current progress. Here, we comprehensively review recent advancements in TiO2 engineering, focusing on crystal engineering, interface design, and reactive site construction to enhance photocatalytic efficiency and product selectivity. We discuss how modifications in TiO2's optical characteristics, carrier migration, and active site design have led to varied and selective CO2 reduction products. These enhancements are thoroughly analyzed through experimental data and theoretical calculations. Additionally, we identify current challenges and suggest future research directions, emphasizing the role of TiO2-based materials in understanding photocatalytic CO2 reduction mechanisms and in designing effective catalysts. This review is expected to contribute to the global pursuit of carbon neutrality by providing foundational insights into the mechanisms of photocatalytic CO2 reduction with TiO2-based materials and guiding the development of efficient photocatalysts.

5.
Comput Biol Med ; 168: 107758, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042102

RESUMO

Convolutional neural network (CNN) has promoted the development of diagnosis technology of medical images. However, the performance of CNN is limited by insufficient feature information and inaccurate attention weight. Previous works have improved the accuracy and speed of CNN but ignored the uncertainty of the prediction, that is to say, uncertainty of CNN has not received enough attention. Therefore, it is still a great challenge for extracting effective features and uncertainty quantification of medical deep learning models In order to solve the above problems, this paper proposes a novel convolutional neural network model named DM-CNN, which mainly contains the four proposed sub-modules : dynamic multi-scale feature fusion module (DMFF), hierarchical dynamic uncertainty quantifies attention (HDUQ-Attention) and multi-scale fusion pooling method (MF Pooling) and multi-objective loss (MO loss). DMFF select different convolution kernels according to the feature maps at different levels, extract different-scale feature information, and make the feature information of each layer have stronger representation ability for information fusion HDUQ-Attention includes a tuning block that adjust the attention weight according to the different information of each layer, and a Monte-Carlo (MC) dropout structure for quantifying uncertainty MF Pooling is a pooling method designed for multi-scale models, which can speed up the calculation and prevent overfitting while retaining the main important information Because the number of parameters in the backbone part of DM-CNN is different from other modules, MO loss is proposed, which has a fast optimization speed and good classification effect DM-CNN conducts experiments on publicly available datasets in four areas of medicine (Dermatology, Histopathology, Respirology, Ophthalmology), achieving state-of-the-art classification performance on all datasets. DM-CNN can not only maintain excellent performance, but also solve the problem of quantification of uncertainty, which is a very important task for the medical field. The code is available: https://github.com/QIANXIN22/DM-CNN.


Assuntos
Medicina , Redes Neurais de Computação , Incerteza , Algoritmos , Método de Monte Carlo
6.
Int J Biol Macromol ; 236: 123974, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898454

RESUMO

Chitosan (CS) is an excellent raw material for the preparation of food packaging films due to its good film-forming properties, non-toxicity, and biodegradability. However, pure chitosan films have drawbacks such as weak mechanical properties and limited antimicrobial activity. In this work, novel food packaging films containing chitosan, polyvinyl alcohol (PVA) and porous graphitic carbon nitride (g-C3N4) were successfully prepared. The PVA served to improve the mechanical properties of the chitosan-based films, whilst the porous g-C3N4 acted as a photocatalytically-active antibacterial agent. The tensile strength (TS) and elongation at break (EAB) of the g-C3N4/CS/PVA films both increased by ~4 times compared to the pristine CS/PVA films at the optimum g-C3N4 loading of ~10 wt%. The addition of g-C3N4 increase the water contact angle (WCA) of the films from 38° to 50°, whilst decreasing the water vapor permeability (WVP) from 160 × 10-12 to 135 × 10-12 g∙Pa-1 s-1 m-1. The shelf life of strawberries covered with g-C3N4/CS/PVA films at room temperature could be extended up to 96 h, compared to 48 h and 72 h for strawberries covered with polyethylene (PE) films or CS/PVA films, respectively. The g-C3N4/CS/PVA films offered good antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Further, the composite films could be easily recycled with the regenerated films offering almost identical mechanical properties and activities as the original films. The prepared g-C3N4/CS/PVA films thus offer promise for low-cost antimicrobial packaging applications.


Assuntos
Anti-Infecciosos , Quitosana , Quitosana/farmacologia , Álcool de Polivinil/farmacologia , Frutas , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Embalagem de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...