Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 592: 216934, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710299

RESUMO

The Staphylococcal nuclease and Tudor domain containing 1 (SND1) has been identified as an oncoprotein. Our previous study demonstrated that SND1 impedes the major histocompatibility complex class I (MHC-I) assembly by hijacking the nascent heavy chain of MHC-I to endoplasmic reticulum-associated degradation. Herein, we aimed to identify inhibitors to block SND1-MHC-I binding, to facilitate the MHC-I presentation and tumor immunotherapy. Our findings validated the importance of the K490-containing sites in SND1-MHC-I complex. Through structure-based virtual screening and docking analysis, (-)-Epigallocatechin (EGC) exhibited the highest docking score to prevent the binding of MHC-I to SND1 by altering the spatial conformation of SND1. Additionally, EGC treatment resulted in increased expression levels of membrane-presented MHC-I in tumor cells. The C57BL/6J murine orthotopic melanoma model validated that EGC increases infiltration and activity of CD8+ T cells in both the tumor and spleen. Furthermore, the combination of EGC with programmed death-1 (PD-1) antibody demonstrated a superior antitumor effect. In summary, we identified EGC as a novel inhibitor of SND1-MHC-I interaction, prompting MHC-I presentation to improve CD8+ T cell response within the tumor microenvironment. This discovery presents a promising immunotherapeutic candidate for tumors.

3.
Cell Mol Life Sci ; 81(1): 59, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279051

RESUMO

BACKGROUND: Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS: Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS: Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS: The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.


Assuntos
Músculo Liso Vascular , Lesões do Sistema Vascular , Camundongos , Animais , Hiperplasia/metabolismo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia , Proliferação de Células , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Constrição Patológica/metabolismo , Constrição Patológica/patologia , Fatores de Transcrição/metabolismo , Fenótipo , Neointima/genética , Neointima/metabolismo , Neointima/patologia , Miócitos de Músculo Liso/metabolismo , Células Cultivadas , Movimento Celular
4.
Open Med (Wars) ; 18(1): 20230847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025539

RESUMO

Considering the connection between the Fanconi anemia (FA) signaling pathway and tumor development, we aim to investigate the links between the FA gene expression and the survival prognosis of acute myeloid leukemia (AML) patients. Our study begins by identifying two distinct clusters of pediatric AML patients. Following the batch matching of the TARGET-AML, TCGA-LAML GSE71014, GSE12417, and GSE37642 cohorts, the samples were divided into a training set and an internal validation set. A Lasso regression modeling analysis was performed to identify five signatures: BRIP1, FANCC, FANCL, MAD2L2, and RFWD3. The AML samples were stratified into high- and low-risk groups by evaluating the risk scores. The AML high-risk patients showed a poorer overall survival prognosis. To predict the survival rates, we developed an FA Nomogram incorporating risk score, gender, age, and French-American-British classification. We further utilized the BEAT-AML cohort for the external validation of FA-associated prognostic models and observed good clinical validity. Additionally, we found a correlation between DNA repair, cell cycle, and peroxide-related metabolic events and FA-related high/low risk or cluster 1/2. In summary, our novel FA-associated prognostic models promise to enhance the prediction of pediatric AML prognosis.

5.
BMC Med Genomics ; 16(1): 290, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974167

RESUMO

BACKGROUND: Individuals diagnosed with Fanconi anemia (FA), an uncommon disorder characterized by chromosomal instability affecting the FA signaling pathway, exhibit heightened vulnerability to the onset of myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML). METHODS: Herein, we employed diverse bioinformatics and statistical analyses to investigate the potential associations between the expression/mutation patterns of FA pathway genes and MDS/AML. RESULTS: The study included 4295 samples, comprising 3235 AML and 1024 MDS from our and nine other online cohorts. We investigated the distinct proportion of race, age, French-American-British, and gender factors. Compared to the FA wild-type group, we observed a decrease in the expression of FNACD2, FANCI, and RAD51C in the FA mutation group. The FA mutation group exhibited a more favorable clinical overall survival prognosis. We developed a random forest classifier and a decision tree based on FA gene expression for cytogenetic risk assessment. Furthermore, we created an FA-related Nomogram to predict survival rates in AML patients. CONCLUSIONS: This investigation facilitates a deeper understanding of the functional links between FA and MDS/AML.


Assuntos
Anemia de Fanconi , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Síndromes Mielodisplásicas/genética , Leucemia Mieloide Aguda/genética , Mutação , Prognóstico , Transdução de Sinais/genética
7.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766831

RESUMO

In the cellular response to stresses, the tumor suppressor p53 is activated to maintain genomic integrity and fidelity. As a transcription factor, p53 exhibits rich dynamics to allow for discrimination of the type and intensity of stresses and to direct the selective activation of target genes involved in different processes including cell cycle arrest and apoptosis. In this review, we focused on how stresses are encoded into p53 dynamics and how the dynamics are decoded into cellular outcomes. Theoretical modeling may provide a global view of signaling in the p53 network by coupling the encoding and decoding processes. We discussed the significance of modeling in revealing the mechanisms of the transition between p53 dynamic modes. Moreover, we shed light on the crosstalk between the p53 network and other signaling networks. This review may advance the understanding of operating principles of the p53 signaling network comprehensively and provide insights into p53 dynamics-based cancer therapy.


Assuntos
Transdução de Sinais , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Apoptose/genética , Regulação da Expressão Gênica , Pontos de Checagem do Ciclo Celular
8.
Biomed Pharmacother ; 158: 114174, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587559

RESUMO

Emerging biologics and small-molecule drugs have changed the clinical status quo of inflammatory bowel disease (IBD). However, current treatments remain at a standstill in terms of response and remission in many cases. Accumulating evidence indicates that dual-targeted therapy (DTT) could be promising in overcoming the existing ceiling of IBD treatment. However, data on the efficacy and safety of DTT on Crohn's disease and ulcerative colitis are still limited or insufficient. Moreover, there is a lack of studies delineating the mechanisms of DTT. Given that various targeted drugs have different targets among the extensive redundant inflammatory networks, DTT could result in various outcomes. In this review, we have summarized the current data on the safety, effectiveness, and clinical development status of novel targeted drugs related to refractory IBD, and have explored the mechanism of action of therapy. We have categorized therapeutic agents into "Therapeutic Agents Targeting Cellular Signaling Pathways" and "Therapeutic Agents Targeting Leukocyte Trafficking" based on the different therapeutic targets, and also by classifying therapeutic agents targeting the cellular signaling pathways into "JAK-dependent" and "JAK-independent," and placed the existing drug combinations into 3 categories based on their mechanisms, namely, overlapping, synergistic, and complementary effects. Lastly, we have proposed the possible mechanisms of DTT to conceive a theoretical framework for clinical decision-making and further drug development and research from an IBD standpoint.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doença de Crohn/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Leucócitos/metabolismo , Janus Quinases
9.
Microorganisms ; 10(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36557606

RESUMO

As a Gram-positive cocci existing in nature, Staphylococcus has a variety of species, such as Staphylococcus aureus and Staphylococcus epidermidis, etc. Growing evidence reveals that Staphylococcus is closely related to the occurrence and development of various cancers. On the one hand, cancer patients are more likely to suffer from bacterial infection and antibiotic-resistant strain infection compared to healthy controls. On the other hand, there exists an association between staphylococcal infection and carcinogenesis. Staphylococcus often plays a pathogenic role and evades the host immune system through surface adhesion molecules, α-hemolysin, PVL (Panton-Valentine leukocidin), SEs (staphylococcal enterotoxins), SpA (staphylococcal protein A), TSST-1 (Toxic shock syndrom toxin-1) and other factors. Staphylococcal nucleases (SNases) are extracellular nucleases that serve as genomic markers for Staphylococcus aureus. Interestingly, a human homologue of SNases, SND1 (staphylococcal nuclease and Tudor domain-containing 1), has been recognized as an oncoprotein. This review is the first to summarize the reported basic and clinical evidence on staphylococci and neoplasms. Investigations on the correlation between Staphylococcus and the occurrence, development, diagnosis and treatment of breast, skin, oral, colon and other cancers, are made from the perspectives of various virulence factors and SND1.

10.
Front Cell Infect Microbiol ; 12: 973563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072223

RESUMO

As a set of inflammatory disorders, spondyloarthritis (SpA) exhibits distinct pathophysiological, clinical, radiological, and genetic characteristics. Due to the extra-articular features of this disorder, early recognition is crucial to limiting disability and improving outcomes. Gut dysbiosis has been linked to SpA development as evidence grows. A pathogenic SpA process is likely to occur when a mucosal immune system interacts with abnormal local microbiota, with subsequent joint involvement. It is largely unknown, however, how microbiota alterations predate the onset of SpA within the "gut-joint axis". New microbiome therapies, such as probiotics, are used as an adjuvant therapy in the treatment of SpA, suggesting that the modulation of intestinal microbiota and/or intestinal barrier function may contribute to the prevention of SpA. In this review, we highlight the mechanisms of SpA by which the gut microbiota impacts gut inflammation and triggers the activation of immune responses. Additionally, we analyze the regulatory role of therapeutic SpA medication in the gut microbiota and the potential application of probiotics as adjunctive therapy for SpA.


Assuntos
Microbioma Gastrointestinal , Espondilartrite , Espondiloartropatias , Disbiose , Humanos , Inflamação , Espondilartrite/terapia
11.
Bioengineered ; 12(1): 7360-7375, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34608846

RESUMO

Although our previous research shows an ameliorated high-fat diet (HFD)-induced hepatic steatosis and insulin resistance in global SND1 transgenic mice, the involvement of SND1 loss-of-function in hepatic metabolism remains elusive. Herein, we aim to explore the potential impact of hepatocyte-specific SND1 deletion on insulin-resistant mice. As SND1 is reported to be linked to inflammatory response, the pathobiological feature of acute liver failure (ALF) is also investigated. Hence, we construct the conditional liver knockout (LKO) mice of SND1 for the first time. Under the condition of HFD, the absence of hepatic SND1 affects the weight of white adipose tissue, but not the gross morphology, body weight, cholesterol level, liver weight, and hepatic steatosis of mice. Furthermore, we fail to observe significant differences in either HFD-induced insulin resistance or lipopolysaccharide/D-galactosamine-induced (LPS/D-GaIN) ALF between LKO and wild type (WT) mice in terms of inflammation and tissue damage. Compared with negative controls, there is no differential SND1 expression in various species of sample with insulin resistance or ALF, based on several gene expression omnibus datasets, including GSE23343, GSE160646, GSE120243, GSE48794, GSE13271, GSE151268, GSE62026, GSE120652, and GSE38941. Enrichment result of SND1-binding partners or related genes indicates a sequence of issues related to RNA or lipid metabolism, but not glucose homeostasis or hepatic failure. Overall, hepatic SND1 is insufficient to alter the phenotypes of hepatic insulin resistance and acute liver failure in mice. The SND1 in various organs is likely to cooperate in regulating glucose homeostasis by affecting the expression of lipid metabolism-related RNA transcripts during stress.


Assuntos
Endonucleases , Resistência à Insulina/genética , Falência Hepática Aguda , Animais , Dieta Hiperlipídica , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Técnicas de Inativação de Genes , Hepatócitos/citologia , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Masculino , Camundongos , Camundongos Knockout
12.
BMC Cancer ; 21(1): 786, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238242

RESUMO

BACKGROUND: The clinical pathologic stages (stage I, II, III-IV) of hepatocellular carcinoma (HCC) are closely linked to the clinical prognosis of patients. This study aims at investigating the gene expression and mutational profile in different clinical pathologic stages of HCC. METHODS: Based on the TCGA-LIHC cohort, we utilized a series of analytical approaches, such as statistical analysis, random forest, decision tree, principal component analysis (PCA), to identify the differential gene expression and mutational profiles. The expression patterns of several targeting genes were also verified by analyzing the Chinese HLivH060PG02 HCC cohort, several GEO datasets, HPA database, and diethylnitrosamine-induced HCC mouse model. RESULTS: We identified a series of targeting genes with copy number variation, which is statistically associated with gene expression. Non-synonymous mutations mainly existed in some genes (e.g.,TTN, TP53, CTNNB1). Nevertheless, no association between gene mutation frequency and pathologic stage distribution was detected. The random forest and decision tree modeling analysis data showed a group of genes related to different HCC pathologic stages, including GAS2L3 and SEMA3F. Additionally, our PCA data indicated several genes associated with different pathologic stages, including SNRPA and SNRPD2. Compared with adjacent normal tissues, we observed a highly expressed level of GAS2L3, SNRPA, and SNRPD2 (P = 0.002) genes in HCC tissues of our HLivH060PG02 cohort. We also detected the high expression pattern of GAS2L3, SEMA3F, SNRPA, and SNRPD2 in the datasets of GSE102079, GSE76427, GSE64041, GSE121248, GSE84005, and the qPCR assay using diethylnitrosamine-induced HCC mouse model. Moreover, SEMA3F and SNRPD2 protein were highly stained in the HCC tissues of the HPA database. The high expression level of these four genes was associated with the poor survival prognosis of HCC cases. CONCLUSIONS: Our study provides evidence regarding the gene expression and mutational profile in different clinical pathologic stages of TCGA HCC cases. Identifying four targeting genes, including GAS2L3, SNRPA, SNRPD2, and SEMA3F, offers insight into the molecular mechanisms associated with different prognoses of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Análise Mutacional de DNA/métodos , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/patologia , China , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Estadiamento de Neoplasias
13.
Cancer Med ; 10(8): 2826-2839, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33713047

RESUMO

BACKGROUND: Emerging oncogenes were reportedly linked to the complicated subtypes and pathogenesis of clinical gliomas. Herein, we first comprehensively explored the potential correlation between growth-arrest-specific two family genes (GAS2, GAS2L1, GAS2L2, GAS2L3) and gliomas by bioinformatics analysis and cellular experiments. METHODS: Based on the available datasets of TCGA (The Cancer Genome Atlas), CGGA (Chinese Glioma Genome Atlas), and Oncomine databases, we performed a series of analyses, such as gene expression, survival prognosis, DNA methylation, immune infiltration, and partner enrichment. We also utilized two glioma cell lines to conduct the colony formation and wound-healing assay. RESULTS: GAS2L3 gene was highly expressed in glioma tissues compared to normal brain tissues (p < 0.05). We further observed the relationship between the high expressed GAS2L3 and poor clinical prognosis of brain low-grade glioma (LGG) cases in our Cox proportional hazard model (hazard ratio [HR] = 0.1715, p < 0.001). Moreover, DNA hypomethylation status of GAS2L3 was correlated with the high expression of GAS2L3 in LGG tissues and the poor clinical prognosis of primary glioma cases (p < 0.05). We also found that the high expression of GAS2L3 was associated with the infiltration level of immune cells, especially the T cells (p < 0.0001). Functional enrichment analysis of GAS2L3-correlated genes and interaction partners further indicated that GAS2L3 might take part in the occurrence of glioma by influencing a series of biological behaviors, such as cell division, cytoskeleton binding, and cell adhesion. Additionally, our cellular experiment data suggested that a highly expressed GAS2L3 gene contributes to the enhanced proliferation and migration of glioma cells. CONCLUSION: This study first analyzed the potential role of GAS2 family genes, especially GAS2L3, in the clinical prognosis and possible functional mechanisms of glioma, which gives a novel insight into the relationship between GAS2L3 and LGG.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Glioma/genética , Glioma/mortalidade , Proteínas dos Microfilamentos/genética , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/imunologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glioma/imunologia , Humanos , Estimativa de Kaplan-Meier , Proteínas dos Microfilamentos/química , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Família Multigênica , Mutação , Prognóstico
14.
Blood Sci ; 3(1): 20-25, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35399206

RESUMO

Next-generation sequencing technology has been widely utilized for the diagnosis of Fanconi anemia (FA). However, mixed cell sequencing and chimerism of FA patients may lead to unconfirmed genetic subtypes. Herein, we introduced two novel diagnostic methods, including single-cell sequencing and capillary nano-immunoassay. One FA case with FANCM c.4931G>A p.R1644Q and FANCD1 c.6325G>A p.V2109I was studied. The DNA of 28 cells was amplified and eight types of cells were observed after Sanger sequencing. There were two homozygous mutations (FANCM/FANCD1). Furthermore, the capillary nano-immunoassay was conducted to analyze the expression profile of FA-associated proteins. Abnormal FANCM and FANCD1 expressions simultaneously existed. This case was thus diagnosed as FA-D1/FA-M dual subtype. Compared with mixed cell sequencing, single-cell sequencing data shows more accuracy for the FA subtype evaluation, while the capillary nano-immunoassay is a good method to detect the expression profile of abnormal or modified FA protein.

15.
Blood Sci ; 3(3): 71-77, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35402838

RESUMO

Fanconi anemia (FA), an X-linked genetic or autosomal recessive disease, exhibits complicated pathogenesis. Previously, we detected the mutated Dynein Axonemal Heavy Chain 2 (DNAH2) gene in 2 FA cases. Herein, we further investigated the potential association between DNAH2 and the homologous recombination repair pathway of FA. The assays of homologous recombination repair, mitomycin C (MMC) sensitivity, immunofluorescence, and ubiquitination modification were performed in U2OS and DR-U2OS cell lines. In MMC-treated U2OS cells, the downregulation of the DNAH2 gene increased the sensitivity of cells to DNA inter-strand crosslinks. We also observed the reduced enrichment of FANCD2 protein to DNA damage sites. Furthermore, the ubiquitination modification level of FANCD2 was influenced by the deficiency of DNAH2. Thus, our results suggest that DNAH2 may modulate the cell homologous recombination repair partially by increasing the ubiquitination and the enrichment to DNA damage sites of FANCD2. DNAH2 may act as a novel co-pathogenic gene of FA patients.

16.
RNA Biol ; 18(6): 900-913, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33054526

RESUMO

The mechanisms that regulate cell-cycle arrest of cardiomyocytes during heart development are largely unknown. We have previously identified Tudor staphylococcal nuclease (Tudor-SN) as a cell-cycle regulator and have shown that its expression level was closely related to cell-proliferation capacity. Herein, we found that Tudor-SN was highly expressed in neonatal mouse myocardia, but it was lowly expressed in that of adults. Using Data Base of Transcription Start Sites (DBTSS), we revealed that Tudor-SN was a terminal oligo-pyrimidine (TOP) mRNA. We further confirmed that the translational efficiency of Tudor-SN mRNA was controlled by the mammalian target of rapamycin complex 1 (mTORC1) pathway, as revealed via inhibition of activated mTORC1 in primary neonatal mouse cardiomyocytes and activation of silenced mTORC1 in adult mouse myocardia; additionally, this result was recapitulated in H9c2 cells. We also demonstrated that the downregulation of Tudor-SN in adult myocardia was due to inactivation of the mTORC1 pathway to ensure that heart growth was in proportion to that of the rest of the body. Moreover, we revealed that Tudor-SN participated in the mTORC1-mediated regulation of cardiomyocytic proliferation, which further elucidated the correlation between Tudor-SN and the mTORC1 pathway. Taken together, our findings suggest that the translational efficiency of Tudor-SN is regulated by the mTORC1 pathway in myocardia and that Tudor-SN is involved in mTORC1-mediated regulation of cardiomyocytic proliferation and cardiac development.


Assuntos
Endonucleases/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Miócitos Cardíacos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Transdução de Sinais/genética , Animais , Animais Recém-Nascidos , Linhagem Celular , Proliferação de Células/genética , Células Cultivadas , Endonucleases/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , RNA Mensageiro/metabolismo , Ratos
17.
Cell Prolif ; 54(1): e12934, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33103301

RESUMO

Members of the growth arrest-specific 2 (GAS2) protein family consist of a putative actin-binding (CH) domain and a microtubule-binding (GAR) domain and are considered miniversions of spectraplakins. There are four members in the GAS2 family, viz. GAS2, GAS2L1, GAS2L2 and GAS2L3. Although GAS2 is defined as a family of growth arrest-specific proteins, the significant differences in the expression patterns, interaction characteristics and biological issues or diseases among the different GAS2 family members have not been systemically reviewed to date. Therefore, we summarized the available evidence on the structures and functions of GAS2 family members. This review facilitates a comprehensive molecular understanding of the involvement of the GAS2 family members in an array of biological processes, including cytoskeleton reorganization, cell cycle, apoptosis and cancer development.


Assuntos
Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Neoplasias/metabolismo , Apoptose , Ciclo Celular , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Neoplasias/patologia
18.
Cancer Cell Int ; 20(1): 595, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308219

RESUMO

BACKGROUND: In terms of biological behavior, gene regulation, or signaling pathways, there is a certain similarity between tumorigenesis and embryonic development of humans. Three germ layer structure exhibits the distinct ability to form specific tissues and organs. METHODS: The present study set out to investigate the genetic mutation characteristics of germ layer differentiation-related genes using the tumor cases of the cancer genome atlas (TCGA) database. RESULTS: These tumor samples were divided into three groups, including the ectoderm, mesoderm, and endoderm. Children cases less than 9 years old accounted for a larger proportion for the cases in the ectoderm and mesoderm groups; whereas the middle-aged and elderly individuals (from 50 to 89 years old) were more susceptible to tumors of endoderm. There was a better prognosis for the cases of mesoderm, especially the male with the race of White, compared with the other groups. A missense mutation was frequently detected for the cases of ectoderm and endoderm, while deletion mutation was common for that of mesoderm. We could not identify the ectoderm, mesoderm, or endoderm-specific mutated genes or variants with high mutation frequency. However, there was a relatively higher mutation incidence of endoderm markers (GATA6, FOXA2, GATA4, AFP) in the endoderm group, compared with the groups of ectoderm and mesoderm. Additionally, four members (SMO, GLI1, GLI2, GLI3) within the Hedgehog signaling pathway genes showed a relatively higher mutation rate in the endoderm group than the other two groups. CONCLUSIONS: TCGA tumors of ectoderm, mesoderm, and endoderm groups exhibit the distinct subject distribution, survival status, and genomic alteration characteristics. The synergistic mutation effect of specific genes closely related to embryonic development may contribute to the tumorigenesis of tissues or organs derived from the specific germ layers. This study provides a novel reference for exploring the functional connection between embryogenesis and tumorigenesis.

19.
Biomed Pharmacother ; 129: 110460, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32768950

RESUMO

Radiation is a current standard treatment of glioma. The fractionated radiotherapy with low dose of radiation over weeks has been employed in glioma patients, while radiotherapy can only offer palliation due to the radioresistance. We cumulatively radiated a glioblastoma cell line, U87MG, and screened radioresistant glioma cells. A transcriptome sequencing was performed to analyze the transcription differences between the raidoresistant and control cells, which showed the mitochondria NADH-ubiquinone oxidoreductase (Complex I) subunits were up-regulated in the radioresistant cells. The copy numbers of mitochondria were increased in the radioresistant glioma cells. After using mitochondria Complex I inhibitors, rotenone and metformin, to treat glioma cells, we found the resistant glioma cells re-sensitized to radiation. These results demonstrate that Complex I is associated with the fractioned radiation-induced radioresistance of glioma and would be a potent target for clinical radiotherapy of glioma.


Assuntos
Neoplasias Encefálicas/radioterapia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Glioma/radioterapia , Metformina/farmacologia , Mitocôndrias/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Rotenona/farmacologia , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia
20.
Genomics ; 112(6): 3958-3967, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32645525

RESUMO

Although emerging cell- or animal-based evidence supports the relationship between SND1 and cancers, no pan-cancer analysis is available. We thus first explored the potential oncogenic roles of SND1 across thirty-three tumors based on the datasets of TCGA (The cancer genome atlas) and GEO (Gene expression omnibus). SND1 is highly expressed in most cancers, and distinct associations exist between SND1 expression and prognosis of tumor patients. We observed an enhanced phosphorylation level of S426 in several tumors, such as breast cancer or lung adenocarcinoma. SND1 expression was associated with the CD8+T-cell infiltration level in colon adenocarcinoma and melanoma, and cancer-associated fibroblast infiltration was observed in other tumors, such as bladder urothelial carcinoma or testicular germ cell tumors. Moreover, protein processing- and RNA metabolism-associated functions were involved in the functional mechanisms of SND1. Our first pan-cancer study offers a relatively comprehensive understanding of the oncogenic roles of SND1 across different tumors.


Assuntos
Endonucleases/genética , Neoplasias/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...