Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Phytomedicine ; 129: 155541, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38579640

RESUMO

BACKGROUND: Diarrheal irritable bowel syndrome (IBS-D), characterized primarily by the presence of diarrhea and abdominal pain, is a clinical manifestation resulting from a multitude of causative factors. Furthermore, Sishen Wan (SSW) has demonstrated efficacy in treating IBS-D. Nevertheless, its mechanism of action remains unclear. METHODS: A model of IBS-D was induced by a diet containing 45 % lactose and chronic unpredictable mild stress. Additionally, the impact of SSW was assessed by measuring body weight, visceral sensitivity, defecation parameters, intestinal transport velocity, intestinal neurotransmitter levels, immunohistochemistry, and transmission electron microscopy analysis. Immunofluorescent staining was used to detect the expression of Mucin 2 (MUC2) and Occludin in the colon. Western blotting was used to detect changes in proteins related to tight junction (TJ), autophagy, and endoplasmic reticulum (ER) stress in the colon. Finally, 16S rRNA amplicon sequencing was used to monitor the alteration of gut microbiota after SSW treatment. RESULTS: Our study revealed that SSW administration resulted in reduced visceral sensitivity, improved defecation parameters, decreased intestinal transport velocity, and reduced intestinal permeability in IBS-D mice. Furthermore, SSW promotes the secretion of colonic mucus by enhancing autophagy and inhibiting ER stress. SSW treatment caused remodeling of the gut microbiome by increasing the abundance of Blautia, Muribaculum and Ruminococcus torques group. CONCLUSION: SSW can improve intestinal barrier function by promoting autophagy and inhibiting ER stress, thus exerting a therapeutic effect on IBS-D.

2.
J Agric Food Chem ; 72(2): 1339-1353, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38183657

RESUMO

Two offline multidimensional chromatography/high-resolution mass spectrometry systems (method 1: fractionation and online two-dimensional liquid chromatography, 2D-LC; method 2: fractionation and offline 2D-LC) were established to characterize the metabolites simultaneously from three Glycyrrhiza species. Ion exchange chromatography in the first-dimensional (1D) separation was well fractionated between the acidic (mainly triterpenoids) and weakly acidic components (flavonoids). These obtained subsamples got sophisticated separation by the second (2D) and third dimension (3D) of chromatography either by online reversed-phase chromatography × reversed-phase chromatography (RPC × RPC) or offline hydrophilic interaction chromatography × RPC (HILIC × RPC). Orthogonality for the 2D/3D separations reached 0.73 for method 1 and 0.81 for method 2, respectively. We could characterize 1097 compounds from three Glycyrrhiza species based on an in-house library and 33 reference standards, involving 618 by method 1 and 668 by method 2, respectively. They exhibited a differentiated performance and complementarity in identifying the multiple subclasses of Glycyrrhiza components.


Assuntos
Cromatografia de Fase Reversa , Glycyrrhiza , Espectrometria de Massas , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Interações Hidrofóbicas e Hidrofílicas
3.
J Pharm Biomed Anal ; 239: 115911, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091818

RESUMO

Polygonatum odoratum (Yu-Zhu) can be utilized to treat the digestive and respiratory illness. Previous studies have revealed that the underlying therapeutic mechanism of P. odoratum polysaccharides (POPs) is associated with remodeling the gut microbiota. However, POPs in terms of the chemical composition and fermentation activities have been understudied. Here we developed the three-level fingerprinting approaches to characterize the structures of POPs and probed into the beneficial effects on promoting the growth and fermentation of Lactobacillus johnsonii. POPs were prepared by water decoction followed by alcohol sedimentation, while trifluoroacetic acid under different conditions to prepare the hydrolyzed oligosaccharides and monosaccharides. POPs exhibited three main molecular distribution of 601-620 kDa, 4.12-6.09 kDa, and 3.57-6.02 kDa. Hydrolyzed oligosaccharides with degree of polymerization (DP) 2-13 got primarily characterized by analyzing the rich fragmentation information obtained by hydrophilic interaction chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (HILIC/IM-QTOF-MS). Amongst them, the DP5 oligosaccharide was characterized as 1,6,6-kestopentaose. The molecular ratio of Fru: Ara: Glc: Gal: Xyl was 87.72: 0.30: 11.56: 0.19: 0.23. In vitro fermentation demonstrated that 4.5 mg/mL of POPs could significantly promote the growth of L. johnsonii. Co-cultivated with 4.5 mg/mL of POPs, L. johnsonii exhibited stronger antimicrobial activity against Klebsiella pneumoniae. The concentrations of short-chain fatty acids in the POPs-lactobacilli fermented products, including acetic acid, isobutyric acid, and isovaleric acid, were increased. Conclusively, POPs represent the promising prebiotic candidate to facilitate lactobacilli, which is associated with exerting the health benefits.


Assuntos
Microbioma Gastrointestinal , Lactobacillus johnsonii , Polygonatum , Polygonatum/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Oligossacarídeos , Lactobacillus
4.
Phytother Res ; 38(1): 384-399, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992723

RESUMO

Acute myocardial infarction (MI) is one of the leading causes of mortality around the world. Prunella vulgaris (Xia-Ku-Cao in Chinese) is used in traditional Chinese medicine practice for the treatment of cardiovascular diseases. However, its active ingredients and mechanisms of action on cardiac remodeling following MI remain unknown. In this study, we investigated the cardioprotective effect of P. vulgaris on MI rat models. MI rats were treated with aqueous extract of P. vulgaris or phenolic acids from P. vulgaris, including caffeic acid, ursolic acid or rosmarinic acid, 1 day after surgery and continued for the following 28 days. Then the cardioprotective effect, such as cardiac function, inflammatory status, and fibrosis areas were evaluated. RNA-sequencing (RNA-seq) analysis, real-time polymerase chain reaction (PCR), western blotting, and ELISA were used to explore the underlying mechanism. In addition, ultra-high performance liquid chromatography/mass spectrometer analysis was used to identify the chemicals from P. vulgaris. THP-1NLRP3-GFP cells were used to confirm the inhibitory effect of P. vulgaris and phenolic acids on the expression and activity of NLRP3. We found that P. vulgaris significantly improved cardiac function and reduced infarct size. Meanwhile, P. vulgaris protected cardiomyocyte against apoptosis, evidenced by increasing the expression of anti-apoptosis protein Bcl-2 in the heart and decreasing lactate dehydrogenase (LDH) levels in serum. Results from RNA-seq revealed that the therapeutic effect of P. vulgaris might relate to NLRP3-mediated inflammatory response. Results from real-time PCR and western blotting confirmed that P. vulgaris suppressed NLRP3 expression in MI heart. We also found that P. vulgaris suppressed NLRP3 expression and the secretion of HMGB1, IL-1ß, and IL-18 in THP-1NLRP3-GFP cells. Further studies indicated that the active components of P. vulgaris were three phenolic acids, those were caffeic acid, ursolic acid, and rosmarinic acid. These phenolic acids inhibited LPS-induced NLRP3 expression and activity in THP-1 cells, and improved cardiac function, suppressed inflammatory aggregation and fibrosis in MI rat models. In conclusion, our study demonstrated that P. vulgaris and phenolic acids from P. vulgaris, including caffeic acid, ursolic acid, and rosmarinic acid, could improve cardiac function and protect cardiomyocytes from ischemia injury during MI. The mechanism was partially related to inhibiting NLRP3 activation.


Assuntos
Infarto do Miocárdio , Prunella , Ratos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Prunella/metabolismo , Remodelação Ventricular , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos , Fibrose , Ácidos Cafeicos/farmacologia
5.
Front Pharmacol ; 14: 1265177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094883

RESUMO

Sepsis is a life-threatening multiple organ dysfunction syndrome (MODS) caused by a microbial infection that leads to high morbidity and mortality worldwide. Sepsis-induced cardiomyopathy (SIC) and coagulopathy promote the progression of adverse outcomes in sepsis. Here, we reported that ACT001, a modified compound of parthenolide, improved the survival of sepsis mice. In this work, we used cecal ligation and puncture (CLP) model to induce SIC. Transthoracic echocardiography and HE staining assays were adopted to evaluate the influence of ACT001 on sepsis-induced cardiac dysfunction. Our results showed that ACT001 significantly improved heart function and reduced SIC. Coagulation accelerates organ damage in sepsis. We found that ACT001 decreased blood clotting in the FeCl3-induced carotid artery thrombosis experiment. ACT001 also reduced the production of neutrophil extracellular traps (NETs). RNA-sequencing of heart tissues revealed that ACT001 significantly downregulated the expression of pro-inflammatory cytokines and the JAK-STAT signaling pathway. These results were confirmed with real-time PCR and ELISA. In summary, we found ACT001 rescued mice from septic shock by protecting the cardiovascular system. This was partially mediated by inhibiting pro-inflammatory cytokine production and down-regulating the JAK-STAT signaling.

6.
Food Sci Nutr ; 11(11): 6974-6986, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970373

RESUMO

Polygonatum odoratum is appreciated for its edible and medicinal benefits especially for lung protection. However, the contained active components have been understudied, and further research is required to fully exploit its potential application. We aimed to probe into the beneficial effects of Polygonatum odoratum polysaccharide (POP) in lipopolysaccharide-induced lung inflammatory injury mice. POP treatment could ameliorate the survival rate, pulmonary function, lung pathological lesions, and immune inflammatory response. POP treatment could repair intestinal barrier, and modulate the composition of gut microbiota, especially reducing the abundance of Klebsiella, which were closely associated with the therapeutic effects of POP. Investigation of the underlying anti-inflammatory mechanism showed that POP suppressed the generation of pro-inflammatory molecules in lung by inhibiting iNOS+ M1 macrophages. Collectively, POP is a promising multi-target microecological regulator to prevent and treat the immuno-inflammation and lung injury by modulating gut microbiota.

7.
Int J Biol Macromol ; 253(Pt 3): 126994, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37730001

RESUMO

Ginseng is rich of polysaccharides, however, the evidence supporting polysaccharides to distinguish various ginseng species is rarely reported. Focusing on six root ginseng (e.g., Panax ginseng-PG, P. quinquefolius-PQ, P. notoginseng-PN, red ginseng-RG, P. japonicus-PJ, and P. japonicus var. major-PJM), the contained non-starch polysaccharides (NPs) were structurally characterized and compared by both the chemical and biological evaluation. Holistic fingerprinting at three levels (the NPs and the acid hydrolysates involving oligosaccharides and monosaccharides) utilized various chromatography methods, and the treatment of H9c2 cells with the NPs by OGD and H2O2-induced injury models was used to assess the protective effect. NPs from six Panax herbal medicines occupied about 20 % of the total polysaccharides, which were of the highest content in RG and the lowest in PN. NPs from six ginseng exhibited weak differentiations in the molecular weight distribution, while marker oligosaccharides were found to distinguish PN and RG from the others. Glc and GalA were more abundant in the NPs for PG and RG, respectively. NPs from PQ (100/200 µg/mL) showed significant cardiomyocyte protection effect by regulating the mitochondrial functions. This work further testifies the role of polysaccharides in quality control of herbal medicine, with new markers discovered beneficial to distinguish the ginseng.


Assuntos
Panax , Plantas Medicinais , Miócitos Cardíacos , Peróxido de Hidrogênio , Panax/química , Extratos Vegetais/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Oligossacarídeos
8.
J Chromatogr A ; 1706: 464243, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37567002

RESUMO

To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.


Assuntos
Produtos Biológicos , Ginsenosídeos , Panax , Ginsenosídeos/análise , Panax/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Cromatografia Líquida , Flores/química , Produtos Biológicos/análise
9.
J Chromatogr A ; 1707: 464304, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37611386

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) could provide a large amount of information to assist in metabolites identification. Different liquid chromatographic methods (CMs) could produce different retention times to the same metabolite. To predict the retention time of local dataset by online datasets has become a trend, but the datasets downloaded from different databases were differences in quantity levels. And the imbalanced data could produce bad influence in model prediction. Thus, based on quantitative structure-retention relationships (QSRRs), an ensemble model, named RT-Ensemble Pred, has been successfully built to predict retention time of different LC-MS systems in this study. A total of 76, 807 metabolites (76, 909 retention times) have been collected across 9 CMs, and 19 natural products and 1 antifungal drug (20 retention times) have been collected to test the model applicability. An ensemble sampling was applied for the preprocessing procedure to solve the problem of imbalanced data. Based on the ensemble sampling, RT-Ensemble Pred could better utilize online datasets for the prediction of retention time. RT-Ensemble Pred was built based on the online datasets and tested by local dataset. The predictive accuracy of RT-Ensemble Pred was higher than the models without any sampling methods. The results showed that RT-Ensemble Pred could predict the metabolites which was not included in the database and the metabolites which were from new CMs. It could also be used for the prediction of other compounds beside metabolites. Furthermore, a tool of RT-Ensemble Pred was packed and can be freely downloaded at https://gitlab.com/mikic93/rt-ensemble-pred. It provides convenience for the users who need to predict the retention time of metabolites.


Assuntos
Produtos Biológicos , Espectrometria de Massas em Tandem , Cromatografia Líquida , Antifúngicos , Bases de Dados Factuais
10.
J Sep Sci ; 46(19): e2300374, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37582648

RESUMO

A challenge in the quality control of traditional Chinese medicine is the systematic multicomponent characterization of the compound formulae. Jiawei Fangji Huangqi, a modified form of Fangji Huangqi, is a prescription comprising seven herbal medicines. To address the chemical complexity of the Jiawei Fangji Huangqi decoction, we integrated ion mobility-quadrupole time-of-flight high-definition MSE coupled to ultra-high-performance liquid chromatography and intelligent data processing workflows available in the UNIFI software package. Good chromatographic separation was achieved on CORTECS UPLC T3 column within 52 min, and high-accuracy MS2 data were acquired using high-definition MSE in the negative and positive modes. A chemical library of 1250 compounds was created and incorporated into the UNIFI software to enable automatic peak annotation of the high-definition MSE data. We identified or tentatively characterize 430 compounds in the Jiawei Fangji Huangqi decoction. The potential superiority of high-definition MSE over conventional MS data acquisition approaches was revealed in its spectral quality (MS2 ), differentiation of isomers, separation of coeluting compounds, and target mass coverage. The multiple components of the Jiawei Fangji Huangqi decoction were elucidated, offering insight into its improved pharmacological action compared with that of the Fangji Huangqi formula.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão/métodos , Fluxo de Trabalho , Espectrometria de Massas/métodos , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa
11.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1899-1907, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282966

RESUMO

To study the quality control of three traditional Chinese medicines derived from Gleditsia sinensis [Gleditsiae Sinensis Fructus(GSF), Gleditsiae Fructus Abnormalis(GFA), and Gleditsiae Spina(GS)], this paper established a multiple reaction monitoring(MRM) approach based on ultra-high performance liquid chromatography-triple quadrupole-linear ion-trap mass spectrometry(UHPLC-Q-Trap-MS). Using an ACQUITY UPLC BEH C_(18) column(2.1 mm × 100 mm, 1.7 µm), gradient elution was performed at 40 ℃ with water containing 0.1% formic acid-acetonitrile as the mobile phase running at 0.3 mL·min~(-1), and the separation and content determination of ten chemical constituents(e.g., saikachinoside A, locustoside A, orientin, taxifolin, vitexin, isoquercitrin, luteolin, quercitrin, quercetin, and apigenin) in GSF, GFA, and GS were enabled within 31 min. The established method could quickly and efficiently determine the content of ten chemical constituents in GSF, GFA, and GS. All constituents showed good linearity(r>0.995), and the average recovery rate was 94.09%-110.9%. The results showed that, the content of two alkaloids in GSF(2.03-834.75 µg·g~(-1)) was higher than that in GFA(0.03-10.41 µg·g~(-1)) and GS(0.04-13.66 µg·g~(-1)), while the content of eight flavonoids in GS(0.54-2.38 mg·g~(-1)) was higher than that in GSF(0.08-0.29 mg·g~(-1)) and GFA(0.15-0.32 mg·g~(-1)). These results provide references for the quality control of G. sinensis-derived TCMs.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Flavonoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas
12.
Chin Herb Med ; 15(2): 263-270, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265757

RESUMO

Objective: The compatibility of Eucommia ulmoides (Eu) and Psoralea corylifolia (Pc) on the pharmacokinetic (PK) properties in the rat was explored in this study. Methods: Eu extract, Pc extract and the combined extracts (crude drug ratio was 2:1) was administered by gavage, respectively. Two PK experiments were conducted. In first one, the blood samples were collected via the occuli chorioideae vein to get the PK properties of the components. In second one, the blood samples were simultaneously collected via the internal jugular vein or portal vein at different time points and the concentrations of target ingredients were detected by LC/MS/MS to clear the location where the interaction of Eu and Pc took place in vivo. Results: Eight of 11 ingredients in Eu and Pc extract were determined in rat plasma. The exposure levels of geniposidic acid (GPA), aucubin (AU), geniposide (GP), pinoresinol diglucoside (PDG), psoralen glycosides (PLG) and isopsoralen glycosides (IPLG) were decreased 1/5-2/3 after administration of combined extracts. Comparing to the combined administration, the exposure of GPA and AU in plasma of single Eu administration collected via the portal vein were decreased 1/3-2/3, and the values of AUC0-24h and AUC0-∞ of GP collected from the portal vein or internal jugular vein were double increased. The other components' parameters were not significantly changed. Conclusion: In summary, the Pc and Eu combined administration could affect the exposure of the main components of Eu extract in rats due to the changed intestinal absorption. The research on the compatibility of Pc and Eu was helpful to guide the clinical administration of Eu and Pc simultaneously.

13.
Zhongguo Zhong Yao Za Zhi ; 48(11): 2989-2999, 2023 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-37381973

RESUMO

This study was designed to comprehensively characterize and identify the chemical components in traditional Chinese medicine Psoraleae Fructus by establishing an ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) method in combination with in-house library. The chromatographic separation conditions(stationary phase, column temperature, mobile phase, and elution gradient) and key MS monitoring parameters(capillary voltage, nozzle voltage, and fragmentor) were sequentially optimized via single-factor experiments. A BEH C_(18) column(2.1 mm×100 mm, 1.7 µm) was finally adopted, with the mobile phase consisting of 0.1% formic acid in water(A) and acetonitrile(B) at the flow rate of 0.4 mL·min~(-1) and column temperature of 30 ℃. Auto MS/MS was utilized for data acquisition in both positive and negative ion modes. By comparison with reference compounds, analysis of the MS~2 fragments, in-house library retrieval and literature research, 83 compounds were identified or tentatively characterized from Psoraleae Fructus, including 58 flavonoids, 11 coumarins, 4 terpenoid phenols, and 10 others. Sixteen of them were identified by comparison with reference compounds, and ten compounds may have not been reported from Psoraleae Fructus. This study achieved a rapid qualitative analysis on the chemical components in Psoraleae Fructus, which provided useful reference for elucidating its material basis and promoting the quality control.


Assuntos
Medicina Tradicional Chinesa , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Ciclo Celular , Cumarínicos
14.
J Chromatogr A ; 1700: 464042, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37163941

RESUMO

One bottleneck problem in the quality control of traditional Chinese medicine (TCM) is the accurate identification of easily confused herbal medicines from Chinese patent medicine (CPM). Ginseng products derived from the multiple parts (e.g., root/rhizome, leaf, and flower bud) of multiple Panax species (P. ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major) are globally popular; however, their authentication is very challenging. Using online comprehensive two-dimensional liquid chromatography (LC × LC), we propose the concept of a three-dimensional characteristic chromatogram (3D CC) by integrating enhanced LC × LC separation and a contour plot that visualizes the stereoscopic chromatographic peaks and examine its performance in authenticating various ginseng products. Targeted at the resolution of 17 ginsenoside markers, an online LC × LC/UV system with a 56 min analysis time was constructed: a CORTECS UPLC Shield RP 18 column running at 0.1 mL/min for the first-dimensional chromatography and a Poroshell SB-Aq column at 2.0 mL/min in shift gradient mode in the second dimension of separation. In particular, ginsenosides Rg1/Re and Rc/Ra1 were well resolved. According to the presence/absence of stereo peaks consistent with the main ginsenoside markers in the 3D CC and the depth of shade (depending on peak volume), it was feasible to use a single method to identify and distinguish among 12 different ginseng species as the drug materials and the use of ginseng simultaneously from 21 CPMs. Conclusively, a practical solution enabling the accurate identification of easily confused TCMs was provided, covering both the drug materials and the compound preparations.


Assuntos
Medicamentos de Ervas Chinesas , Ginsenosídeos , Panax , Plantas Medicinais , Panax/química , Ginsenosídeos/análise , Medicamentos sem Prescrição , Cromatografia Líquida de Alta Pressão/métodos , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/química
15.
J Ethnopharmacol ; 315: 116664, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37253395

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Psoraleae (FP), the dried and ripe fruit of Cullen corylifolium (L.) Medik., is widely used due to its various clinical pharmacological effects, but its hepatotoxicity restricts its clinical application. So far, its hepatotoxic components and their underlying mechanism have not been systematically elucidated. AIM OF THE STUDY: This study was undertaken to reveal the hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in FP and elucidate their potential mechanism. METHODS: Rats were administrated with the aqueous extract of Fructus Psoraleae (AEFP), in which eight coumarin-related compounds were focused. Subsequently, compounds exposed in rats' livers were detected by UPLC-Q-TOF-MS, and the identified hepatotoxic compounds were evaluated to elaborate their possible mechanism by the aid of high content analysis (HCA). RESULTS: Eight coumarin-related compounds were identified, among which psoralenoside (PO), isopsoralenoside (IPO), psoralen (P), and isopsoralen (IP) were the principally exposed compounds in rats' livers. Furocoumarinic acid glucoside (FAG), (E)-3-(4-(((2S, 3R, 4S, 5S, 6R)-3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) oxy) benzofuran-5-yl) acrylic acid (isofurocoumarinic acid glucoside, IFAG), furocoumarinic acid (FA), and (E)-3-(4-hydroxybenzofuran-5-yl) acrylic acid (isofurocoumarinic acid, IFA) were also detected in low abundance. P, IP, FA, and IFA were identified as the hepatotoxic compounds, while their glycosides were almost non-hepatotoxic. The HCA's results showed that hepatotoxic compounds disrupted the balance in reactive oxygen species (ROS), nuclear area, and mitochondrial membrane potential of HepG2 cells, leading to the occurrence of hepatotoxicity. CONCLUSIONS: P, IP, FA, and IFA were identified as hepatotoxic compounds, from which P and IP were proposed as the important risk components for hepatotoxicity. The conversion from glycosides to aglycones played an essential role in FP-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Psoralea , Ratos , Animais , Frutas/química , Medicamentos de Ervas Chinesas/toxicidade , Glicosídeos/toxicidade , Glicosídeos/análise , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Glucosídeos
16.
Br J Pharmacol ; 180(16): 2156-2171, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36914407

RESUMO

BACKGROUND AND PURPOSE: Respiratory diseases have become a global health problem and may lead to acute lung injury (ALI) in severe cases. ALI progression is associated with complex pathological changes; however, there are currently no effective therapeutic drugs. Excessive activation and recruitment of immunocytes in the lungs and the release of large amounts of cytokines are considered the primary causes of ALI, but the cellular mechanisms involved remain unknown. Therefore, new therapeutic strategies need to be developed to control the inflammatory response and prevent the further aggravation of ALI. EXPERIMENTAL APPROACH: Lipopolysaccharide was administered to mice via tail vein injection to establish an ALI model. Key genes regulating lung injury in mice were screened by RNA sequencing (RNA-seq), and their regulatory effects on inflammation and lung injury were assessed in in vivo and in vitro experiments. KEY RESULTS: The key regulatory gene KAT2A up-regulated the expression of inflammatory cytokines and induced lung epithelial injury. Chlorogenic acid, a small natural molecule and KAT2A inhibitor, inhibited the inflammatory response and significantly improved the decreased respiratory function caused by lipopolysaccharide administration in mice by inhibiting the expression of KAT2A. CONCLUSION AND IMPLICATIONS: Targeted inhibition of KAT2A suppressed the release of inflammatory cytokines and improved respiratory function in this murine model of ALI. Chlorogenic acid, a specific KAT2A-targeting inhibitor, was effective in treating ALI. In conclusion, our results provide a reference for the clinical treatment of ALI and contribute to the development of novel therapeutic drugs for lung injury.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Citocinas/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL
17.
Adv Sci (Weinh) ; 10(14): e2202964, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950739

RESUMO

Tissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2+ circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2̶ macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair. Here, the authors harvested M2 macrophage-derived sEV (M2EV ) from M2-polarized bone-marrow-derived macrophages for intramyocardial injection and recapitulation of sEV-mediated anti-inflammatory activity in ischemic-reperfusion (I/R) injured hearts. Rats and pigs received sham surgery; I/R without treatment; or I/R with autologous M2EV treatment. M2EV rescued cardiac function and attenuated injury markers, infarct size, and scar size. M2EV inhibited CCR2+ macrophage numbers, reduced monocyte-derived CCR2+ macrophage recruitment to infarct sites, induced M1-to-M2 macrophage switching and promoted neovascularization. Analysis of M2EV microRNA content revealed abundant miR-181b-5p, which regulated macrophage glucose uptake, glycolysis, and mitigated mitochondrial reactive oxygen species generation. Functional blockade of miR-181b-5p is detrimental to beneficial M2EV actions and resulted in failure to inhibit CCR2+ macrophage numbers and infarct size. Taken together, this investigation showed that M2EV rescued myocardial function, improved myocardial repair, and regulated CCR2+ macrophages via miR-181b-5p-dependent mechanisms, indicating an option for cell-free therapy for AMI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Suínos , Ratos , Animais , Receptores CCR2/genética , Macrófagos/fisiologia , Infarto do Miocárdio/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico
18.
J Pharm Anal ; 13(2): 170-186, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36908856

RESUMO

Small ubiquitin-related modifier (SUMOylation) is a dynamic post-translational modification that maintains cardiac function and can protect against a hypertrophic response to cardiac pressure overload. However, the function of SUMOylation after myocardial infarction (MI) and the molecular details of heart cell responses to SUMO1 deficiency have not been determined. In this study, we demonstrated that SUMO1 protein was inconsistently abundant in different cell types and heart regions after MI. However, SUMO1 knockout significantly exacerbated systolic dysfunction and infarct size after myocardial injury. Single-nucleus RNA sequencing revealed the differential role of SUMO1 in regulating heart cells. Among cardiomyocytes, SUMO1 deletion increased the Nppa + Nppb + Ankrd1 + cardiomyocyte subcluster proportion after MI. In addition, the conversion of fibroblasts to myofibroblasts subclusters was inhibited in SUMO1 knockout mice. Importantly, SUMO1 loss promoted proliferation of endothelial cell subsets with the ability to reconstitute neovascularization and expressed angiogenesis-related genes. Computational analysis of ligand/receptor interactions suggested putative pathways that mediate cardiomyocytes to endothelial cell communication in the myocardium. Mice preinjected with cardiomyocyte-specific AAV-SUMO1, but not the endothelial cell-specific form, and exhibited ameliorated cardiac remodeling following MI. Collectively, our results identified the role of SUMO1 in cardiomyocytes, fibroblasts, and endothelial cells after MI. These findings provide new insights into SUMO1 involvement in the pathogenesis of MI and reveal novel therapeutic targets.

19.
Front Microbiol ; 14: 1140498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970663

RESUMO

Introduction: The gut microbial community, which can be disturbed or repaired by changes in the internal environment, contributes to the development of acute myocardial infarction (AMI). Gut probiotics play a role in microbiome remodeling and nutritional intervention post-AMI. A newly isolated Lactobacillus johnsonii strain EU03 has shown potential as a probiotic. Here, we investigated the cardioprotective function and mechanism of L. johnsonii through gut microbiome remodeling in AMI rats. Methods: A rat model of left anterior descending coronary artery ligation (LAD)-mediated AMI was assessed with echocardiography, histology, and serum cardiac biomarkers to evaluate the beneficial effects of L. johnsonii. The immunofluorescence analysis was utilized to visualize the intestinal barrier changes. Antibiotic administration model was used for assessing the gut commensals' function in the improvement of cardiac function post-AMI. The underlying beneficial mechanism through L. johnsonii enrichment was further investigated by metagenomics and metabolomics analysis. Results: A 28-day treatment with L. johnsonii protected cardiac function, delayed cardiac pathology, suppressed myocardial injury cytokines, and improved gut barrier integrity. The microbiome composition was reprogrammed by enhancing the abundance of L. johnsonii. Microbiome dysbiosis by antibiotics abrogated the improvement of cardiac function post-AMI by L. johnsonii. L. johnsonii enrichment caused remodeling of gut microbiome by increasing the abundance of Muribaculaceae, Lactobacillus, and decreasing Romboutsia, Clostridia UCG-014, which were correlated with cardiac traits and serum metabolic biomarkers 16,16-dimethyl-PGA2, and Lithocholate 3-O-glucuronide. Conclusion: These findings reveal that gut microbiome remodeling by L. johnsonii ameliorates the cardiac function post-AMI and might advance microbiome-targeted nutritional intervention.Graphical Abstract.

20.
Heliyon ; 9(3): e14107, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915559

RESUMO

Even though Jerusalem artichoke (Helianthus tuberosus L.) has strong resistance to abiotic stresses, salinity can still reduce the biomass of Jerusalem artichoke. The purpose of this study was to elucidate the differences in the development of Jerusalem artichoke and the dynamics of sugar throughout the growth period under high (7.23-8.15 g/kg) and low (3.20-4.32 g/kg) salinity stress in the field in Jiangsu Province, China. This study confirmed that high salinity promoted the conversion of reducing sugars to non-reducing sugars (fructans) in Jerusalem artichoke tubers, but significantly reduced the biomass of Jerusalem artichoke and advanced the peak time of the dry matter accumulation of aerial parts. In addition, in the early and late stages of tuberization, the total sugar content of tubers under low salinity conditions (786 ± 8 mg/g and 491 ± 8 mg/g) was 93.3% and 1.15 times than those under high salinity conditions, respectively. Moreover, the total sugar content in stems was consistently greater under high than low salinity conditions in the same period. The accumulation rate and the amount of dry matter were significantly higher in stems than in other tissues. Therefore, the aerial parts of "Nanyu No. 1" could be harvested before mid-to-early October, and the tubers after mid-November. This study revealed the internal reasons for the decreased yield of Jerusalem artichoke under salt stress, and provided theoretical basis and guidance for the cultivation and utilization of Jerusalem artichoke in saline-alkali soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...