Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 876: 162808, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36921853

RESUMO

Field investigations in the Northwest Pacific Ocean were carried out to determine the distributions of marine and atmospheric non-methane hydrocarbons (NMHCs), sources and environmental effects. We also conducted deck incubation experiments to investigate the effects of atmospheric aerosol deposition on NMHCs production. The marine NMHCs displayed an increasing trend from the South Equatorial Current to the Oyashio Current. The enhanced phytoplankton biomass and dissolved organic materials (DOM) content in the Kuroshio-Oyashio Extension contributed significantly to isoprene and NMHCs production compared with those in tropical waters and the North Pacific subtropical gyre. The Northwest Pacific Ocean was a significant source of atmospheric NMHCs, with average sea-to-air fluxes of 28.0 ± 38.9, 65.2 ± 73.3, 21.0 ± 26.7, 48.7 ± 62.6, 12.7 ± 15.9, 14.2 ± 16.8, and 41.7 ± 80.4 nmol m-2 d-1 for ethane, ethylene, propane, propylene, i-butane, n-butane, and isoprene, respectively. Influenced by seawater release and OH radical consumption, the atmospheric NMHCs apart from isoprene displayed upward trends with increasing latitude. The deck incubation showed that the addition of aerosols and acidic aerosols significantly boosted phytoplankton biomass, altered community structure, and accelerated the production of isoprene. However, the other six NMHCs showed no obvious responses to atmospheric aerosol deposition in the incubation experiments. In summary, ocean current movements and atmospheric deposition could influence the production and release of isoprene in the Northwest Pacific Ocean.

2.
Sci Total Environ ; 769: 144488, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33485203

RESUMO

Methyl halides are important greenhouse gases responsible for the majority of the ozone layer depletion. This study investigated atmospheric and seawater methyl halides (CH3Cl, CH3Br, and CH3I) in the western Pacific Ocean between 2°N and 24°N. Increases in methyl halides in the atmosphere were likely to have originated from Southeast Asian regions. Elevated CH3I concentrations in seawater were mainly produced photochemically from dissolved organic carbon. Maximum methyl halide and chlorophyll a levels in the upper water column (0-200 m) were linked to biological activity and downwelling or upwelling caused by cold and warm eddies. Ship-based incubation experiments showed that nutrient supplementation promoted methyl halide emissions. The elevated methyl halide production was associated with increases in phytoplankton such as diatoms. The mean fluxes of CH3Cl, CH3Br, and CH3I in study area of during the cruise were 82.91, 4.70, and 3.50 nmol m-2 d-1, respectively. The estimated emissions of CH3Cl, CH3Br, and CH3I in the western Pacific Ocean accounted for 0.67%, 0.79% and 0.09% of global oceanic emissions, respectively, indicating that the open sea contribute insignificantly to the global oceanic emissions of these gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...