Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 22294-22302, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634660

RESUMO

Flexible and stretchable organic solar cells (OSCs) show great promise in wearable and stretchable electronic applications. However, current high-performance OSCs consisting of polymer donors (PDs) and small-molecule acceptors (SMAs) face significant challenges in achieving both high power conversion efficiency (PCE) and excellent stretch-ability. In this study, we synthesized a new polymerized-small-molecule acceptor (P-SMA) PY-SiO featuring siloxane-terminated side chains and compared its photovoltaic and mechanical performance to that of the reference PY-EH with ethylhexyl-terminated side chains. We found that the incorporation of siloxane-terminated side chains in PY-SiO enhanced the molecular aggregation and charge transport, leading to an optimized film morphology. The resultant of all-polymer solar cells (all-PSCs) based on PBDB-T/PY-SiO showed a higher PCE of 12.04% than the PY-EH-based one (10.85%). Furthermore, the siloxane-terminated side chains also increased the interchain distance and provided a larger free volume for chain rotation and reconfiguration, resulting in a higher film crack-onset strain (COS: 18.32% for PBDB-T/PY-SiO vs 11.15% for PBDB-T/PY-EH). Additionally, the PY-SiO-based stretchable all-PSCs exhibited an impressive PCE of 9.8% and retained >70% of its original PCE even under a substantial 20% strain, exceeding the performance of the PY-EH-based stretchable all-PSCs. Our result suggests the great potential of the siloxane-terminated side chain for achieving high-performance and stretchable OSCs.

2.
Adv Sci (Weinh) ; 10(2): e2204727, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36398626

RESUMO

Polarization-sensitive photodetectors based on anisotropic semiconductors sense both the intensity and polarization state information without extra optical components. Here, a self-powered organic photodetector (OPD) composed of intrinsically stretchable polymer donor PNTB6-Cl and non-fullerene acceptor Y6 is reported. The PNTB6-Cl:Y6 photoactive film accommodates a remarkable 100% strain without fracture, exhibiting a high optical anisotropy of 1.8 after strain alignment. The resulting OPD not only shows an impressive faint-light detection capability (high spectral responsivity of 0.45 A W-1 and high specific detectivity of 1012 Jones), but also has a high anisotropic responsivity ratio of 1.42 under the illumination of parallel and traversed polarized light. To the best of the authors' knowledge, both the detector performance and polarization features are among the best-performing OPDs and polarization-sensitive photodetectors. As a proof-of-concept, polarization-sensitive OPDs are also utilized to set up a polarimetric imaging system and full-Stokes polarimeter. This work explores the potential of highly stretchable organic semiconductors for state-of-art polarization imaging and spectroscopy applications.

3.
Small ; 18(26): e2201589, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638221

RESUMO

Developing intrinsically stretchable organic solar cells (OSCs) with excellent mechanical robustness and long-term operation stability is highly demanded for practical applications. Here, the representative PM6/Y6 active layer film, crosslinked by a photo-crosslinkable small molecule 2,6-bis(4-azidobenzylidene)cyclohexanone (BAC) containing azide groups, exhibits a significantly enhanced stretchability of 18% and toughness of 6.94 MJ m-3 , compared to non-crosslinked film (stretchability of 4.5% and toughness of 0.75 MJ m-3 ). It is found that controlling the crosslinking density, including crosslinker concentration and crosslinking time, plays a vital impact on the stretchability and mechanical toughness of active layer film. The resulting intrinsically stretchable OSCs achieve a high power conversion efficiency (PCE) of 13.4% and retain 80% of its performance even under the large strain of 20%. To date, this is the highest PCE for intrinsically stretchable OSCs based on small molecular acceptors. Moreover, crosslinking of active layer film suppresses the crystallization of PM6 polymer chains and avoids the excessive aggregation of small molecular acceptors under thermal heating or light illumination, leading to a stabilized film morphology and significantly improved device stability. Overall, these results provide a universal strategy to simultaneously enhance the mechanical properties and stability of OSCs without sacrificing their photovoltaic performance.

4.
Adv Mater ; 34(1): e2107211, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34648207

RESUMO

Owing to their insufficient light absorption and charge transport, 2D Ruddlesden-Popper (RP) perovskites show relatively low efficiency. In this work, methylammonium (MA), formamidinum (FA), and FA/MA mixed 2D perovskite solar cells (PSCs) are fabricated. Incorporating FA cations extends the absorption range and enhances the light absorption. Optical spectroscopy shows that FA cations substantially increase the portion of 3D-like phase to 2D phases, and X-ray diffraction (XRD) studies reveal that FA-based 2D perovskite possesses an oblique crystal orientation. Nevertheless, the ultrafast interphase charge transfer results in an extremely long carrier-diffusion length (≈1.98 µm). Also, chloride additives effectively suppress the yellow δ-phase formation of pure FA-based 2D PSCs. As a result, both FA/MA mixed and pure FA-based 2D PSCs exhibit a greatly enhanced power conversion efficiency (PCE) over 20%. Specifically, the pure FA-based 2D PSCs achieve a record PCE of 21.07% (certified at 20%), which is the highest efficiency for low-dimensional PSCs (n ≤ 10) reported to date. Importantly, the FA-based 2D PSCs retain 97% of their initial efficiency at 85 °C persistent heating after 1500 h. The results unambiguously demonstrate that pure-FA-based 2D PSCs are promising for achieving comparable efficiency to 3D perovskites, along with a better device stability.

5.
Adv Mater ; 31(37): e1901673, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31379023

RESUMO

Low-dimensional Ruddlesden-Popper perovskites (RPPs) exhibit excellent stability in comparison with 3D perovskites; however, the relatively low power conversion efficiency (PCE) limits their future application. In this work, a new fluorine-substituted phenylethlammonium (PEA) cation is developed as a spacer to fabricate quasi-2D (4FPEA)2 (MA)4 Pb5 I16 (n = 5) perovskite solar cells. The champion device exhibits a remarkable PCE of 17.3% with a Jsc of 19.00 mA cm-2 , a Voc of 1.16 V, and a fill factor (FF) of 79%, which are among the best results for low-dimensional RPP solar cells (n ≤ 5). The enhanced device performance can be attributed as follows: first, the strong dipole field induced by the 4-fluoro-phenethylammonium (4FPEA) organic spacer facilitates charge dissociation. Second, fluorinated RPP crystals preferentially grow along the vertical direction, and form a phase distribution with the increasing n number from bottom to the top surface, resulting in efficient charge transport. Third, 4FPEA-based RPP films exhibit higher film crystallinity, enlarged grain size, and reduced trap-state density. Lastly, the unsealed fluorinated RPP devices demonstrate superior humidity and thermal stability. Therefore, the fluorination of the long-chain organic cations provides a feasible approach for simultaneously improving the efficiency and stability of low-dimensional RPP solar cells.

6.
J Phys Chem Lett ; 9(24): 6955-6962, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30485106

RESUMO

Substituting the hydrogen atoms on the conjugated side chain of a wide-bandgap polymer J52 with chlorine atoms can simultaneously increase the Jsc, Voc, and FF of nonfullerene OSCs, leading to an efficiency boost from 3.78 to 11.53%, which is among the highest efficiencies for as-cast OSCs reported to date. To illustrate the impressive 3-fold PCE enhancement, the chlorination effect on the optical properties and energy levels of polymers, film morphology, and underlying charge dynamics is systematically investigated. Grazing incidence wide-angle X-ray scattering studies show that chlorinated J52-2Cl exhibits strong molecule aggregation, the preferred face-on orientation, and enhanced intermolecular π-π interactions, hence increasing the charge carrier mobility by 1 order of magnitude. Moreover, chlorination modifies the miscibility between the donor and acceptor and consequently optimizes the phase separation morphology of J52-2Cl:ITIC blend films. These results highlight chlorination as a promising approach to achieve highly efficient as-cast OSCs without any extra treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...