Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chin Med ; 19(1): 93, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956680

RESUMO

Cardiovascular disease (CVD) remains the predominant cause of mortality and disability worldwide. Against this backdrop, finding effective drugs for the pharmacological treatment of CVD has become one of the most urgent and challenging issues in medical research. Garlic (Allium sativum L.) is one of the oldest plants and is world-renowned for its dietary and medicinal values. Allicin (diallyl thiosulfinate) is one of the primary natural active ingredients in garlic, which has been proven to have powerful cardioprotective effects and mediate various pathological processes related to CVD, such as inflammatory factor secretion, myocardial cell apoptosis, oxidative stress, and more. Therefore, allicin holds a promising application prospect in the treatment of CVD. This review summarized the biological functions of allicin and its potential mechanisms in CVD, including antioxidation, anti-inflammation, and anti-apoptosis effects. Reckoning with these, we delved into recent studies on allicin's cardioprotective effects concerning various CVDs, such as atherosclerosis, hypertension, myocardial infarction, arrhythmia, cardiac hypertrophy, heart failure, and cardiotoxicity. Further, considering the tremendous advancement in nanomedicine, nanotechnology-based drug delivery systems show promise in addressing limitations of allicin's clinical applications, including improving its solubility, stability, and bioavailability. Through this review, we hope to provide a reference for further research on allicin in cardioprotection and drug development.

2.
Cerebrovasc Dis ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38964297

RESUMO

BACKGROUND: The effectiveness of thromboelastography (TEG)-guided antiplatelet therapy in patients with ischemic cerebrocardiovascular diseases is not well-established. This systematic review evaluates the efficacy and safety of TEG-guided antiplatelet therapy compared to standard treatment in patients with ischemic cerebrocardiovascular diseases. METHODS: Randomized controlled trials (RCTs) and observational studies comparing TEG-guided antiplatelet therapy with standard therapy in patients suffering from ischemic stroke (IS) or coronary artery disease (CAD) were identified. The primary efficacy measure was a composite of ischemic and hemorrhagic events. Secondary efficacy measures included any ischemic events, while safety was assessed by the occurrence of bleeding events. RESULTS: 10 studies involving 4 RCTs and 6 observational studies with a total of 1,678 patients were included. When considering a composite of ischemic and hemorrhagic events in RCTs, a significant reduction was observed in IS or CAD patients under TEG-guided therapy compared to standard therapy (OR 0.45, 95% CI 0.27 to 0.75, P=0.002). After pooling RCTs and observational studies together, compared to standard antiplatelet therapy, TEG-guided therapy significantly reduced the risk of a composite of ischemic and hemorrhagic events (OR 0.26, 95% CI 0.19 to 0.37; P<0.00001), ischemic events (OR 0.28, 95% CI 0.19 to 0.41; P<0.00001), and bleeding events (OR 0.31, 95% CI 0.16 to 0.62; P=0.0009) in patients with IS or CAD. CONCLUSIONS: TEG-guided antiplatelet therapy appears to be both effective and safe for patients with IS or CAD. These findings support the use of TEG testing to tailor antiplatelet therapy in individuals with ischemic cerebrocardiovascular diseases.

3.
Biomed Pharmacother ; 177: 116933, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38901204

RESUMO

Reactive oxidative species (ROS) generation triggers pyroptosis and induces development of inflammatory osteolysis. Hecogenin (HG) has anti-inflammatory and antioxidative property, but its effects on inflammatory osteolysis remains unclear. In our study, we investigated the mechanism of HG on pyroptosis and its effect on inflammatory osteolysis in vitro and in vivo. The impact of HG on osteoclastogenesis was evaluated using cytotoxicity, TRAcP staining and bone resorption assays. The RNA-sequencing was employed to identify potential signaling pathways, and then RT-qPCR, western blot, immunofluorescence, and ELISA were used to verify. To determine the protective effect of HG in vivo, Lipopolysaccharide (LPS)-induced animal models were utilized, along with micro-CT and histological examination. HG suppressed RANKL-induced osteoclast differentiation, bone resorption, NFATc1 activity and downstream factors. RNA-sequencing results showed that HG inhibited osteoclastogenesis by modulating the inflammatory response and macrophage polarization. Furthermore, HG inhibited the NF-κB pathway, and deactivated the NLRP3 inflammasome. HG activated the expression of nuclear factor E2-related factor 2 (Nrf2) to eliminate ROS generation. Importantly, the inhibitory effect of HG on NLRP3 inflammasome could be reversed by treatment with the Nrf2 inhibitor ML385. In vivo, HG prevented the mice against LPS-induced osteolysis by suppressing osteoclastogenesis and inflammatory factors. In conclusion, HG could activate Nrf2 to eliminate ROS generation, inactivate NLRP3 inflammasome and inhibit pyroptosis, thereby suppressing osteoclastogenesis in vitro and alleviating inflammatory osteolysis in vivo, which indicating that HG might be a promising candidate to treat inflammatory osteolysis.

4.
Adv Healthc Mater ; : e2400797, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726796

RESUMO

The Notch signaling is a key molecular pathway that regulates cell fate and development. Aberrant Notch signaling can lead to carcinogenesis and progression of malignant tumors. However, current therapies targeting Notch pathway lack specificity and induce high toxicity. In this report, a tumor microenvironment-responsive and injectable hydrogel is designed to load plasmid DNA complexes as a cascade gene delivery system to achieve precise Notch-targeted gene therapy of colorectal cancer (CRC). The hydrogels are prepared through cross-linking between phenylboric acid groups containing poly(oligo(ethylene glycol)methacrylate) (POEGMA) and epigallocatechin gallate (EGCG), used to load the complexes between plasmid DNA encoding short hairpin RNAs of Notch1 (shNotch1) and fluorinated polyamidoamine (PAMAM-F) (PAMAM-F/shNotch1). In response to low pH and H2O2 in tumor microenvironment, the hydrogel can be dissociated and release the complexes for precise delivery of shNotch1 into tumor cells and inhibit Notch1 activity to suppress malignant biological behaviors of CRC. In the subcutaneous tumor model of CRC, PAMAM-F/shNotch1-loaded hydrogels can accurately attenuate Notch1 activity and significantly inhibit tumor growth without affecting Notch signal in adjacent normal tissues. Therefore, this therapeutic system can precisely inhibit Notch1 signal in CRC with high responsiveness and low toxicity, providing a promising Notch-targeted gene therapeutic for human malignancy.

5.
Hum Cell ; 37(4): 1024-1038, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38691334

RESUMO

Osteoporosis (OP) is a highly prevalent disorder characterized by low bone mass that severely reduces patient quality of life. Although numerous treatments for OP have been introduced in clinic, many have side effects and high costs. Therefore, there is still an unmet need for optimal solutions. Here, raw signal analysis was used to identify potential high-risk factors for OP, and the biological functions and possible mechanisms of action (MOAs) of these factors were explored via gene set enrichment analysis (GSEA). Subsequently, molecular biological experiments were performed to verify and analyze the discovered risk factors in vitro and in vivo. PMAIP1 was identified as a potential risk factor for OP and significantly suppressed autophagy in osteoblasts via the AMPK/mTOR pathway, thereby inhibiting the proliferation and differentiation of osteoblasts. Furthermore, we constructed an ovariectomy (OVX) model of OP in rats and simultaneously applied si-PMAIP1 for in vivo interference. si-PMAIP1 upregulated the expression of LC3B and p-AMPK and downregulated the expression of p-mTOR, and these effects were reversed by the autophagy inhibitor. Micro-CT revealed that, si-PMAIP1 significantly inhibited the development of osteoporosis in OVX model rats, and this therapeutic effect was attenuated by treatment with an autophagy inhibitor. This study explored the role and mechanism of PMAIP1 in OP and demonstrated that PMAIP1 may serve as a novel target for OP treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Modelos Animais de Doenças , Osteoblastos , Osteoporose , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Humanos , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/fisiologia , Autofagia/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Expressão Gênica/genética , Osteoblastos/metabolismo , Osteoporose/metabolismo , Osteoporose/genética , Osteoporose/etiologia , Ovariectomia , Ratos Sprague-Dawley , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/fisiologia
7.
Phytother Res ; 38(4): 1971-1989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358727

RESUMO

BACKGROUND AND AIM: Osteoporosis, a systemic metabolic bone disease, is characterized by the decline of bone mass and quality due to excessive osteoclast activity. Currently, drug-targeting osteoclasts show promising therapy for osteoporosis. In this study, we investigated the effect of cichoric acid (CA) on receptor activator of nuclear kappa-B ligand (RANKL)-induced osteoclastogenesis and the bone loss induced by ovariectomy in mice. EXPERIMENTAL PROCEDURE: Molecular docking technologies were employed to examine the interaction between CA and RANKL. CCK8 assay was used to evaluate the cell viability under CA treatment. TRAcP staining, podosome belt staining, and bone resorption assays were used to test the effect of CA on osteoclastogenesis and osteoclast function. Further, an OVX-induced osteoporosis mice model was employed to identify the effect of CA on bone loss using micro-CT scanning and histological examination. To investigate underlying mechanisms, network pharmacology was applied to predict the downstream signaling pathways, which were verified by Western blot and immunofluorescence staining. KEY RESULTS: The molecular docking analysis revealed that CA exhibited a specific binding affinity to RANKL, engaging multiple binding sites. CA inhibited RANKL-induced osteoclastogenesis and bone resorption without cytotoxic effects. Mechanistically, CA suppressed RANKL-induced intracellular reactive oxygen species, nuclear factor-kappa B, and mitogen-activated protein kinase pathways, followed by abrogated nuclear factor activated T-cells 1 activity. Consistent with this finding, CA attenuated post-ovariectomy-induced osteoporosis by ameliorating osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS: CA inhibited osteoclast activity and bone loss by targeting RANKL. CA might represent a promising candidate for treating osteoclast-related diseases, such as osteoporosis.


Assuntos
Reabsorção Óssea , Ácidos Cafeicos , Osteoporose , Succinatos , Animais , Feminino , Humanos , Camundongos , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Osteoclastos , Osteogênese , Osteoporose/patologia , Ovariectomia/efeitos adversos , Ligante RANK/metabolismo
8.
Gene ; 893: 147913, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866663

RESUMO

The Chinese soft-shelled turtle (Pelodiscus sinensis) is extensively cultured in Asia for its nutritional and medical value. Gonadal differentiation is fantastic in turtles, whereas morphologic, mRNA, and miRNA expressions were insufficient in the turtle. In this study, ovaries and testes histomorphology analysis of 14-23 stage embryos were performed, and mRNA and miRNA expression profiles were analyzed. Histomorphology analysis revealed that gonads were undifferentiated at embryonic stage 14. Ovarian morphological differentiation became evident from stage 15, which was characterized by the development of the cortical region and degeneration of the medullary region. Concurrently, testicular morphological differentiation was apparent from stage 15, marked by the development of the medullary region and degeneration of the cortical region. qRT-PCR results showed that Cyp19a1 and Foxl2 exhibited female-specific expression at stage 15 and the expression increased throughout most of the embryonic development. Dmrt1, Amh, and Sox9 displayed male-specific expression at stage 15 and tended to increase substantially at later developmental stages. The expression of miR-8356 and miR-3299 in ZZ gonads were significantly higher than that in ZW gonads at stage 15, 17 and 19, and they had the highest expression at stage 15. While the expression of miR-8085 and miR-7982 had the highest expression at stage 19. Furthermore, chromatin remodeler genes showed differential expression in female and male P. sinensis gonads. These results of master sex-differentiation genes and morphological characteristics would provide a reference for the research of sex differentiation and sex reversal in turtles. Additionally, the expression of chromatin remodeler genes indicated they might be involved in gonadal differentiation of P. sinensis.


Assuntos
MicroRNAs , Tartarugas , Animais , Masculino , Feminino , Tartarugas/genética , MicroRNAs/genética , RNA Mensageiro/genética , Gônadas , Diferenciação Sexual/genética , Cromatina
9.
Biochem Pharmacol ; 218: 115895, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084677

RESUMO

Reactive Oxygen Species (ROS) play an essential role in the pathogenesis of osteoporosis mainly characterized by excessive osteoclasts (OCs) activity. OCs are rich in mitochondria for energy support, which is a major source of total ROS. Tussilagone (TSG), a natural Sesquiterpenes from the flower of Tussilago farfara, has plentiful beneficial pharmacological characteristics with anti-inflammatory and anti-oxidative activity, but its effects and mechanism in osteopathology are still unclear. In our study, we investigated the regulation of ROS generated from the mitochondria in OCs. We found that TSG inhibited OCs differentiation and bone resorption without any cytotoxicity. Mechanistically, TSG reduced RANKL-mediated total ROS level by down-regulating intracellular ROS production and mitochondrial function, leading to the suppression of NFATc1 transcription. We also found that nuclear factor erythroid 2-related factor 2 (Nrf2) could enhance ROS scavenging enzymes in response to RANKL-induced oxidative stress. Furthermore, TSG up-regulated the expression of Nrf2 by inhibiting its proteosomal degradation. Interestingly, Nrf2 deficiency reversed the suppressive effect of TSG on mitochondrial activity and ROS signaling in OCs. Consistent with this finding, TSG attenuated post-ovariectomy (OVX)- and lipopolysaccharide (LPS) induced bone loss by ameliorating osteoclastogenesis. Taken together, TSG has an anti-bone resorptive effect by modulating mitochondrial function and ROS production involved Nrf2 activation.


Assuntos
Reabsorção Óssea , Sesquiterpenos , Feminino , Humanos , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteoclastos , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Reabsorção Óssea/metabolismo , Ligante RANK/farmacologia , Diferenciação Celular , NF-kappa B/metabolismo
10.
Org Biomol Chem ; 21(29): 5985-5989, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435618

RESUMO

A convenient method for the alkylation of 3-arylbenzo[d]isoxazoles with maleimides under redox-neutral conditions has been developed, giving a series of substituted succinimides in up to 99% yield. This transformation is highly selective to give succinimides, and Heck-type products are successfully avoided. This protocol features 100% atom-economy and broad substrate tolerance, and provides a novel strategy for the synthesis of diverse succinimides and an opportunity for the succinylation of protein medication and for pharmacologists to discover first-in-class drugs.

11.
J Steroid Biochem Mol Biol ; 233: 106360, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429547

RESUMO

Retinoid X receptor (RXR) is a member of the ligand-dependent nuclear receptor family. Previous studies revealed that RXRs are involved in reproduction in vertebrates. However, information on the function of RXRs in turtles is scarce. In this study, the Rxrγ cDNA sequence of Pelodiscus sinensis was cloned and analyzed, and a polyclonal antibody was constructed. RXRγ protein showed a positive signal in both mature and differentiated gonads of the turtle. Subsequently, the function of the Rxrγ gene in gonadal differentiation was confirmed using short interfering RNA (RNAi). The full-length cDNA sequence of the Rxrγ gene in P. sinensis was 2152 bp, encoding 407 amino acids and containing typical nuclear receptor family domains, including the DNA-binding domain (DBD), ligand-binding domain (LBD), and activation function 1 (AF1). Moreover, gonadal Ps-Rxrγ showed sexual dimorphism expression patterns in differentiated gonads. Real-time quantitative PCR results revealed that the Rxrγ gene was highly expressed in the turtle ovary. RNAi treatment increased the number of Sertoli cells in ZZ embryonic gonads. Furthermore, RNA interference upregulated Dmrt1 and Sox9 in ZZ and ZW embryonic gonads. However, Foxl2, Cyp19a1, Stra8, and Cyp26b1 were downregulated in embryonic gonads. The results indicated that Rxrγ participated in gonadal differentiation and development in P. sinensis.


Assuntos
Tartarugas , Masculino , Animais , Feminino , Tartarugas/genética , DNA Complementar , Ligantes , Gônadas , Diferenciação Celular
12.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446806

RESUMO

Cancer continues to pose a severe threat to global health, making pursuing effective treatments more critical than ever. Traditional therapies, although pivotal in managing cancer, encounter considerable challenges, including drug resistance, poor drug solubility, and difficulties targeting tumors, specifically limiting their overall efficacy. Nanomedicine's application in cancer therapy signals a new epoch, distinguished by the improvement of the specificity, efficacy, and tolerability of cancer treatments. This review explores the mechanisms and advantages of nanoparticle-mediated drug delivery, highlighting passive and active targeting strategies. Furthermore, it explores the transformative potential of nanomedicine in tumor therapeutics, delving into its applications across various treatment modalities, including surgery, chemotherapy, immunotherapy, radiotherapy, photodynamic and photothermal therapy, gene therapy, as well as tumor diagnosis and imaging. Meanwhile, the outlook of nanomedicine in tumor therapeutics is discussed, emphasizing the need for addressing toxicity concerns, improving drug delivery strategies, enhancing carrier stability and controlled release, simplifying nano-design, and exploring novel manufacturing technologies. Overall, integrating nanomedicine in cancer treatment holds immense potential for revolutionizing cancer therapeutics and improving patient outcomes.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Imunoterapia , Diagnóstico por Imagem , Nanopartículas/uso terapêutico
13.
Org Lett ; 25(16): 2923-2927, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37114383

RESUMO

An efficient approach for the synthesis of N-substituted indenoisoquinolinones via rhodium(III)-catalyzed C-H bond activation/subsequent [4 + 2] cyclization starting from easily available 2-phenyloxazolines and 2-diazo-1,3-indandiones has been developed. A series of indeno[1,2-c]isoquinolinones were obtained in up to 93% yield through C-H functionalization, followed by intramolecular annulation, elimination, and ring-opening in a "one pot manner" under mild reaction conditions. This protocol features excellent atom- and step-economy and provides a novel strategy for the synthesis of N-substituted indenoisoquinolinones and a chance to study their biological activities.

14.
Materials (Basel) ; 16(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37048920

RESUMO

To solve the electromigration problem of micro-electronic connection solder joints, an ideal electromigration tester was designed, and the thickness of the intermetallic compounds (IMCs), average void diameter, grain orientation, failure, shear strength, and fracture path of Sn2.5Ag0.7Cu0.1RE0.05Ni-GNSs/Cu solder joints under constant-temperature electromigration were studied. The results indicate that the solder joints show evidence of typical electromigration polarity in the asymmetric growth of interfacial IMCs on the anode and cathode sides under the conditions of a current density ≥7 × 103 A/cm2 and an included angle between the c-axis of the ß-Sn grains and the current direction θ ≤ 53.2°. The anode-side interfacial IMC is dominated by a Cu6Sn5 phase with a gradually increasing thickness, forming a Cu3Sn phase and showing evidence of microcracks. The Cu6Sn5 phase of the cathode-side interfacial IMC is gradually completely dissolved, and the growth of the Cu3Sn phase is accompanied by the formation of Kirkendall voids. The anisotropic diffusion of Cu atoms in the ß-Sn of the micro-solder joints causes increased solder joint resistance and reduced shear strength. The shear fracture path of the solder joints moves from the cathode side near the IMC solder seam to the Cu3Sn interface. The shear fracture mechanism changes from ductile transgranular fracture dominated by ß-Sn dimples to brittle fracture dominated by interfacial IMC cleavage and slip steps.

16.
Arch Biochem Biophys ; 741: 109596, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37030589

RESUMO

OBJECTIVE: Preeclampsia (PE) is a maternal multisystem disease with an unclear mechanism. Data showed that MiR-95-3p promoted cell migration, invasion and proliferation, leading to the occurrence and development of many cancers, and placental trophoblasts and tumor cells had similar migration, invasion and proliferation abilities. Meanwhile we found that MiR-95-3p was differentially expressed in PE and normal placenta. Therefore, this article aimed to explore the biological function and mechanism of miR-95-3p in PE. METHODS: The expression of miR-95-3p in PE and normal placental tissue was explored by high-throughput sequencing and qRT-PCR. The effects of miR-95-3p on trophoblast migration, invasion, proliferation, angiogenesis and apoptosis were investigated by Transwell migration and invasion assays, cell viability assay, tube formation assay and flow cytometry in two trophoblast cell lines (HTR-8/SVneo and JAR). The miR-95-3p target gene EPM2A was identified and verified by unique identifier mRNA next-generation sequencing and dual-luciferase reporter gene experiments. Rescue experiments were conducted to investigate whether miR-95-3p regulated EPM2A to participate in trophoblast migration and invasion. Finally, the effects of miR-95-3p and EPM2A on the expression of angiogenic factors and inflammation-related factors were investigated by ELISA. RESULTS: We found that miR-95-3p was expressed at low levels in the placental tissue of patients with PE and was negatively correlated with EPM2A expression. In vitro upregulation of miR-95-3p and downregulation of EPM2A promote trophoblast migration, invasion and proliferation. Furthermore, EPM2A was confirmed as a target mRNA of miR-95-3p. Upregulation of EPM2A mitigated miR-95-3p-mediated promotion of trophoblast migration and invasion and vice versa. Finally, both miR-95-3p and EPM2A regulate the expression of trophoblast angiogenesis-related factors and inflammation-related factors. CONCLUSION: Our findings demonstrated that miR-95-3p promoted the migration and invasion of trophoblast cells by targeting EPM2A to inhibit the occurrence and development of PE.


Assuntos
MicroRNAs , Pré-Eclâmpsia , Trofoblastos , Feminino , Humanos , Gravidez , Movimento Celular/genética , Proliferação de Células/genética , Metaloproteinase 2 da Matriz/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , RNA Mensageiro/metabolismo , Trofoblastos/metabolismo
18.
Biomed Chromatogr ; 37(5): e5609, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811170

RESUMO

Post-menopausal osteoporosis (PMOP) is a common metabolic bone malady characterized by bone mass loss and bone microarchitectural deterioration; however, there is currently no effective drug for its management. According to our previous study, oroxylin A (OA) could effectively protect ovariectomized (OVX)-osteoporotic mice from bone loss; however, its therapeutic targets are still unclear. From a metabolomic perspective, we studied serum metabolic profiles to discover potential biomarkers and OVX-related metabolic networks, which could assist us to comprehend the impact of OA on OVX. Five metabolites were identified as biomarkers associated with 10 related metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, and phenylalanine, tryptophan and glycerophospholipid metabolism. After OA treatment, the expression of multiple biomarkers changed, with lysophosphatidylcholine (18:2) being a major significantly regulated biomarker. Our study demonstrated that OA's effects on OVX are probably related to the regulation of phenylalanine, tyrosine and tryptophan biosynthesis. Our findings explain the role of OA against PMOP in terms of metabolism and pharmacology and provide a pharmacological foundation for OA treatment of PMOP.


Assuntos
Osteoporose Pós-Menopausa , Animais , Feminino , Humanos , Camundongos , Biomarcadores , Metabolômica , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Fenilalanina , Triptofano , Tirosina , Espectrometria de Massas
19.
PeerJ ; 11: e14851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36788811

RESUMO

Background: MicroRNAs (miRNAs) are endogenous noncoding single-stranded small RNAs. Numerous studies have shown that miRNAs have pivotal roles in the occurrence and development of myocardial fibrosis (MF). However, miRNA expression profile in rats with MF after myocardial infarction (MI) is not well understood. The present study aimed to find the potential miRNA for MF post MI. Methods: SPF male Sprague-Dawley (SD) rat models of acute myocardial infarction (AMI) were established by ligating the anterior descending branch of the left coronary artery, while sham-operated rats were only threaded without ligation as a control group. Hematoxylin-eosin and Masson trichrome staining were used to detect myocardial histopathological changes for model evaluation. The differentially expressed miRNAs were detected by using the Agilent Rat miRNA gene chip in the myocardial tissue of the infarct marginal zone. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by DAVID. The expression of miR-199a-5p was verified by real-time fluorescence quantitative PCR (qRT-PCR). Transfected miR-199a-5p mimics into cardiac fibroblasts (CFs) to construct cell models of miR-199a-5p overexpression. Dual-luciferase reporter assay was employed to validate the target gene of miR-199a-5p. The protein expression of the target gene in CFs transfected with miR-199a-5p mimics were detected by Western blot. Results: Myocardial fibrosis was exacerbated in the model group compared with the control group. Thirteen differentially expressed miRNAs between the two groups were screened and their expression levels in the model group were all higher than those in the control group. The expression of miR-199a-5p was significantly increased in the model group in qRT-PCR, which was consistent with the results of the gene chip. KEGG enrichment analysis showed that the target genes of miR-199a-5p were enriched in the insulin signaling pathway. Furthermore, dual-luciferase reporter assay indicated that miR-199a-5p could negatively regulate the expression of GSK-3ß. After transfection, the expression of miR-199a-5p was increased in the miR-199a-5p mimics group. The protein expression of GSK-3ß was decreased in CFs transfected with miR-199a-5p mimics. Conclusion: Our study identified miR-199a-5p could promote the progression of myocardial fibrosis after myocardial infarction by targeting GSK-3ß, which provides novel targets for diagnosis and treatment of MF.


Assuntos
MicroRNAs , Infarto do Miocárdio , Ratos , Masculino , Animais , MicroRNAs/genética , Glicogênio Sintase Quinase 3 beta , Ratos Sprague-Dawley , Infarto do Miocárdio/genética , Fibrose , Biologia Computacional
20.
FASEB J ; 37(2): e22751, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36692426

RESUMO

Increasing evidence suggests that RNA m5C modification and its regulators have been confirmed to be associated with the pathogenesis of many diseases. However, the distribution and biological functions of m5C in mRNAs of placental tissues remain unknown. we collected placentae from normotensive pregnancies (CTR) and preeclampsia patients (PE) to analyze the transcriptomic profiling of m5C RNA methylation through m5C RNA immunoprecipitation (UMI-MeRIP-Seq). we discovered that overall m5C methylation peaks were decreased in placental tissues from PE patients. And, 2844 aberrant m5C peaks were identified, of which respectively 1304 m5C peaks were upregulated and 1540 peaks were downregulated. The distribution of m5C peaks were mainly located in CDS (coding sequences) regions in placental tissues of both groups, but compared with the CTR group, the m5C peak in PE group before the stop code of CDS was significantly increased and even higher than the peak value after start code in CDS. Differentially methylated genes were mainly enriched in MAPK/cAMP signaling pathway. Moreover, the up-regulated genes with hypermethylated modification were enriched in the processes of hypoxia, inflammation/immune response. Finally, through analyzing the mRNA expression levels of m5C RNA methylation regulators, we found only DNMT3B and TET3 were significantly upregulated in PE samples than in control group. And they are not only negatively correlated with each other, but also closely related to those differentially expressed genes modified by differential methylation.Our findings provide new insights regarding alterations of m5C RNA modification into the pathogenic mechanisms of PE.


Assuntos
Placenta , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA