Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 175: 116659, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692063

RESUMO

Cholangiocarcinoma (CCA), a rare yet notably aggressive cancer, has experienced a surge in incidence in recent years. Presently, surgical resection remains the most effective curative strategy for CCA. Nevertheless, a majority of patients with CCA are ineligible for surgical removal at the time of diagnosis. For advanced stages of CCA, the combination of gemcitabine and cisplatin is established as the standard chemotherapy regimen. Despite this, treatment efficacy is often hindered by the development of resistance. In recent times, immune checkpoint inhibitors, particularly those that block programmed death 1 and its ligand (PD1/PD-L1), have emerged as promising strategies against a variety of cancers and are being increasingly integrated into the therapeutic landscape of CCA. A growing body of research supports that the use of PD1/PD-L1 monoclonal antibodies in conjunction with chemotherapy may significantly improve patient outcomes. This article seeks to meticulously review the latest studies on PD1/PD-L1 involvement in CCA, delving into their expression profiles, prognostic significance, contribution to oncogenic processes, and their potential clinical utility.

2.
Cell Div ; 19(1): 9, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532426

RESUMO

BACKGROUND: The molecular targets and associated mechanisms of hepatocellular carcinoma (HCC) have been widely studied, but the roles of PDZK1 in HCC are unclear. Therefore, the aim of this study is to explore the role and associated mechanisms of PDZK1 in HCC. RESULTS: It was found that the expression of PDZK1 in HCC tissues was higher than that in paired paracancerous tissues. High expression of PDZK1 was associated with lymph node metastasis, degree of differentiation, and clinical stage. Upregulation of PDZK1 in HCC cells affected their proliferation, migration, invasion, apoptosis, and cell cycle, and also induced PI3K/AKT activation. PDZK1 is a downstream target gene of miR-101-3p. Accordingly, increase in the expression of miR-101-3p reversed the promotive effect of PDZK1 in HCC. Moreover, PDZK1 was found to accelerate cell proliferation and promote the malignant progression of HCC via the PI3K/AKT pathway. CONCLUSION: Our study indicated that the miR-101-3p/PDZK1 axis plays a role in HCC progression and could be beneficial as a novel biomarker and new therapeutic target for HCC treatment.

3.
World J Clin Cases ; 12(2): 367-373, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313650

RESUMO

BACKGROUND: Intraductal papillary neoplasms of the bile duct (IPNBs) are rare and characterized by papillary growth within the bile duct lumen. IPNB is similar to obstructive biliary pathology. In this report, we present an unexpected case of asymptomatic IPNB and consolidate our findings with the relevant literature to augment our understanding of this condition. Integrating relevant literature contributes to a more comprehensive understanding of the disease. CASE SUMMARY: A 66-year-old Chinese male patient was admitted to our hospital for surgical intervention after gallstones were discovered during a routine physical examination. Preoperative imaging revealed a lesion on the left side of the liver, which raised the suspicion of IPNB. A laparoscopic left hemihepatectomy was performed, and subsequent histopathological examination confirmed the diagnosis of IPNB. At the 3-mo postoperative follow-up, the patient reported good recovery and no metastasis. IPNB can manifest both latently and asymptomatically. Radical surgical resection is the most effective treatment for IPNB. CONCLUSION: Hepatic and biliary masses, should be considered to diagnose IPNB. Prompt surgery and vigilant follow-up are crucial in determining prognosis.

4.
Nat Commun ; 13(1): 6614, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329064

RESUMO

Heterogeneous Nuclear Ribonucleoprotein K (hnRNPK) is a multifunctional RNA binding protein (RBP) localized in the nucleus and the cytoplasm. Abnormal cytoplasmic enrichment observed in solid tumors often correlates with poor clinical outcome. The mechanism of cytoplasmic redistribution and ensuing functional role of cytoplasmic hnRNPK remain unclear. Here we demonstrate that the SCFFbxo4 E3 ubiquitin ligase restricts the pro-oncogenic activity of hnRNPK via K63 linked polyubiquitylation, thus limiting its ability to bind target mRNA. We identify SCFFbxo4-hnRNPK responsive mRNAs whose products regulate cellular processes including proliferation, migration, and invasion. Loss of SCFFbxo4 leads to enhanced cell invasion, migration, and tumor metastasis. C-Myc was identified as one target of SCFFbxo4-hnRNPK. Fbxo4 loss triggers hnRNPK-dependent increase in c-Myc translation, thereby contributing to tumorigenesis. Increased c-Myc positions SCFFbxo4-hnRNPK dysregulated cancers for potential therapeutic interventions that target c-Myc-dependence. This work demonstrates an essential role for limiting cytoplasmic hnRNPK function in order to maintain translational and cellular homeostasis.


Assuntos
Carcinogênese , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Carcinogênese/genética , Ubiquitinação , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Oncogenes , RNA Mensageiro/metabolismo
5.
Aging (Albany NY) ; 14(20): 8346-8356, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260873

RESUMO

We focus on investigating the role of Parthenolide (Par), a small sesquiterpenoid molecule, in hepatocellular carcinoma (HCC) and its effective target.Highly-metastatic HCC cells, MHCC97-H, were divided into the DMSO and the Par groups, of which the Par group was intervened at 5 and 10 mg/L doses. Cell viability was assessed by CCK-8 assay. Transwell chamber assay was performed to examine the metastatic and invasive abilities, while plate clone formation assay was conducted to detect the clone formation ability. For analysis of glucose uptake, glycolytic ability and lactate level, the glycolysis assay was employed. Brdu staining was performed to evaluate the cell proliferative potential. The P50 and HIF-1α levels were measured by immunofluorescence, while the expressions of p-P50 and HIF-1α were determined by Western-Blot. Small molecule-protein docking and Pull-down experiments were conducted to validate the Par-P50 binding model. After establishing the tumor-bearing mouse model, Par was administered by gavage to measure the tissue levels of P50 and HIF-1α, followed by plotting of tumor growth curves.Par could inhibit the metastatic, invasive and clone formation abilities of MHCC97-H cells, reduce the cell proliferative potential, and suppress the glycolysis, as manifested by down-regulated level of lactate and reduced oxygen consumption. Meanwhile, Par inhibited the HIF-1α expression. We found that after silencing P50, the HIF-1α was down-regulated, the glycolytic ability decreased drastically, and the cellular metastatic and invasive abilities were suppressed. After P50 knockout, the effect of Par intervention on the MHCC97-H cells was reduced. In HCC-bearing mice, Par also exhibited an excellent anti-tumor effect, decreasing the tissue levels of P50 and HIF-1α.This study discovers that Par can inhibit the HIF-1α-mediated glycolysis of HCC cells by targeting P50, thereby exerting an anti-tumor effect. P50 is a major effective target of Par.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sesquiterpenos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lactatos , Linhagem Celular Tumoral
6.
Am J Transl Res ; 14(7): 4948-4963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958507

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the leading malignancies of the digestive system. Circular RNAs (circRNAs) are well-established to play critical regulatory roles in GC development. The current study sought to explore the effects and regulatory mechanism of circ_0001013 in the course of GC. METHODS: First, differential circRNAs and related mechanisms in GC were predicted by microarray analysis. Circ_0001013, microRNA (miR)-136, and TWSG1 expression patterns were subsequently detected in GC clinical samples and cells using RT-qPCR. The relationship among circ_0001013, miR-136, and TWSG1 was further assessed by dual-luciferase reporter assay, biotin-coupled probe pull-down assay, and biotin-coupled miRNA capture. Based on gain- and loss-of-function assays, GC cell proliferation, migration, invasion, and the cell cycle and apoptosis were also measured by 5-ethynyl-2'-deoxyuridine (EdU) assay, scratch test, Transwell assay, and flow cytometry, respectively. Moreover, the effect of circ_0001013 on tumor growth was detected by tumor xenografting in nude mice. RESULTS: Circ_0001013 was predicted to be up-regulated in GC by microarray profiling, which was confirmed by RT-qPCR detection in GC tissues and cells. miR-136 was poorly expressed, and TWSG1 was highly expressed in GC tissues. Mechanistically, circ_0001013 bound to miR-136, which negatively targeted TWSG1 in the GC cells. Silencing circ_0001013 or TWSG1 or over-expressing miR-136 led to decreased GC cell proliferation, migration, invasion, and cell cycle arrest and enhanced apoptosis. Furthermore, silencing circ_0001013 resulted in diminished TWSG1 expression and inhibited transplanted tumor growth in the nude mice. CONCLUSION: Collectively, our findings indicated that circ_0001013 increased TWSG1 expression by binding to miR-136, thereby exerting oncogenic effects in GC.

7.
Nat Commun ; 13(1): 4621, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941159

RESUMO

Pancreatic ß-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise ß-cell identity is unknown. We show here under reversible, chronic stress conditions ß-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of ß-cell function and identity. Upon recovery from stress, ß-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while ß-cells show resilience to episodic ER stress, when episodes exceed a threshold, ß-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest ß-cell adaptive exhaustion contributes to diabetes pathogenesis.


Assuntos
Plasticidade Celular , Células Secretoras de Insulina , Adaptação Fisiológica , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo
8.
Cell Rep ; 40(3): 111092, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858571

RESUMO

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.


Assuntos
Sistema A de Transporte de Aminoácidos , Aminoácidos , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo
9.
Angew Chem Int Ed Engl ; 60(52): 27307-27311, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34699113

RESUMO

Asymmetric reductive amination (ARA) is one of the most promising methods for the synthesis of chiral amines. Herein we report our efforts on merging two ARA reactions into a single-step transformation. Catalyzed by a complex formed from iridium and a steric hindered phosphoramidite, readily available and inexpensive aromatic ketones initially undergo the first ARA with ammonium acetate to afford primary amines, which serve as the amine sources for the second ARA, and finally provide the enantiopure C2 -symmetric secondary amine products. The developed process competently enables the successive coupling of inorganic and organic nitrogen sources with ketones in the same reaction system. The Brønsted acid additive plays multiple roles in this procedure: it accelerates the formation of imine intermediates, minimizes the inhibitory effect of N-containing species on the iridium catalyst, and reduces the primary amine side products.

10.
Mol Cell ; 81(20): 4191-4208.e8, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34686314

RESUMO

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.


Assuntos
Proliferação de Células , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Pressão Osmótica , Biossíntese de Proteínas , Ribossomos/metabolismo , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Animais , Códon de Iniciação , Fibroblastos/patologia , Células HEK293 , Humanos , Cinética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Ribossomos/genética , Transdução de Sinais
11.
Chem Commun (Camb) ; 57(60): 7445-7448, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34232232

RESUMO

G-quadruplex DNA interacts with the N-terminal intrinsically disordered domain of the DEAD-box helicase Ded1p, diminishing RNA unwinding activity but enhancing liquid-liquid phase separation of Ded1p in vitro and in cells. The data highlight multifaceted effects of quadruplex DNA on an enzyme with intrinsically disordered domains.


Assuntos
RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Quadruplex G , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoplasma/química , Citoplasma/metabolismo , RNA Helicases DEAD-box/química , DNA/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase , Domínios Proteicos , RNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química
12.
Elife ; 92020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175843

RESUMO

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.


Cells are sensitive to changes in their environment. For example, maintaining normal salt levels in the blood, also called tonicity, is essential for the health of individual cells and the organism as a whole. Tonicity controls the movement of water in and out of the cell: high levels of salt inside the cell draw water in, while high levels of salt outside the cell draw water out. If salt levels in the environment surrounding the cells become too high, too much water will be drawn out, causing the cells to shrink. Changes in tonicity can cause the cell to become stressed. Initially, cells adapt to this stress by switching on sets of genes that help restore fluid balance and allow the cell to regain its normal shape and size. If the increase in tonicity exceeds tolerable stress levels and harms the cell, this initiates an inflammatory response which ultimately leads to cell death. However, it remained unclear how cells switch from adapting to responding with inflammation. Now, Farabaugh et al. have used an experimental system which mimics high salt to identify the mechanism that allows cells to switch between these two responses. The experiments showed that when salt levels are too high, cells switch on a stress sensing protein called PACT, which activates another protein called PKR. When PACT was deleted from mouse cells, this led to a decrease in the activity of inflammatory genes, and prevented the cells from self-destructing. Other proteins that are involved in the adaptive and inflammatory response are the NF-κB family of proteins and TonEBP. Farabaugh et al. found that under low intensity stress, when salt levels outside the cell are slightly too high, a family member of NF-κB works with TonEBP to switch on adaptive genes. But, if salt levels continue to rise, PACT activates and turns on PKR. This blocks the interaction between NF-κB and TonEBP, allowing another family member of NF-κB to interact with TonEBP instead. This switches the adaptive response off and the inflammatory response on. There are many diseases that involve changes in tonicity, including diabetes, cancer, inflammatory bowel disease, and dry eye syndrome. Understanding the proteins involved in the adaptive and inflammatory response could lead to the development of drugs that help to protect cells from stress-induced damage.


Assuntos
Proteínas de Transporte/metabolismo , Pressão Osmótica , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Adaptação Fisiológica , Animais , Proteínas de Transporte/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Transdução de Sinais , eIF-2 Quinase/genética
13.
Mol Cell Proteomics ; 19(5): 852-870, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132231

RESUMO

The redox-based modifications of cysteine residues in proteins regulate their function in many biological processes. The gas molecule H2S has been shown to persulfidate redox sensitive cysteine residues resulting in an H2S-modified proteome known as the sulfhydrome. Tandem Mass Tags (TMT) multiplexing strategies for large-scale proteomic analyses have become increasingly prevalent in detecting cysteine modifications. Here we developed a TMT-based proteomics approach for selectively trapping and tagging cysteine persulfides in the cellular proteomes. We revealed the natural protein sulfhydrome of two human cell lines, and identified insulin as a novel substrate in pancreatic beta cells. Moreover, we showed that under oxidative stress conditions, increased H2S can target enzymes involved in energy metabolism by switching specific cysteine modifications to persulfides. Specifically, we discovered a Redox Thiol Switch, from protein S-glutathioinylation to S-persulfidation (RTSGS). We propose that the RTSGS from S-glutathioinylation to S-persulfidation is a potential mechanism to fine tune cellular energy metabolism in response to different levels of oxidative stress.


Assuntos
Metabolismo Energético , Compostos de Sulfidrila/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Animais , Bioensaio , Biotina/metabolismo , Linhagem Celular , Cisteína/metabolismo , Dissulfetos/metabolismo , Glicólise , Hepatócitos/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Células Secretoras de Insulina/metabolismo , Espectrometria de Massas , Análise do Fluxo Metabólico , Mitocôndrias/metabolismo , Oxirredução , Proteoma/metabolismo , Proteômica , Ratos , Sulfetos/metabolismo
14.
Sci Rep ; 9(1): 14826, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597941

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 9(1): 11541, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395901

RESUMO

The imidazolium compound YM155, first discovered as a potent inhibitor of Survivin, effectively kills many carcinomas in preclinical models. However, the upstream signaling mechanism triggered by YM155 remains unclear. Here we studied early signaling responses in vitro in prostate and renal cancer cell lines in a dose-dependent manner. We found that YM155 rapidly activates the retinoblastoma protein, correlating with the loss of expression of all three Cyclin Ds. Using Western blot, various selective chemical inhibitors and q-PCR, we show that YM155-mediated decrease in protein levels of Cyclin Ds, Survivin and Mcl-1 is independent of transcription or proteasomal control mechanisms. Moreover, we provide the first evidence that YM155 changes the phosphorylation status of known mTOR-target proteins involved in translational control, namely ribosomal protein S6 (rS6) and 4E-BP1. Our data support that YM155 achieves this by blocking mTORC1 via the phosphorylation of Raptor at S792 through activated AMPKα (T172). Furthermore, we also used a polysome profile, supporting that YM155 markedly suppresses cap-dependent translation of mRNAs which include Survivin, Cyclin D1 and Mcl-1. We provide the first evidence that YM155 functions as a potent activator of AMPKα, a robust suppressor of mTORC1 and an attenuator of global protein synthesis.


Assuntos
Carcinoma/tratamento farmacológico , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/efeitos dos fármacos , Carcinoma/genética , Carcinoma/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Próstata/efeitos dos fármacos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Survivina/genética
17.
Nanotechnology ; 30(21): 212002, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30708362

RESUMO

Owing to the high mobility, narrow bandgap, strong spin-orbit coupling and large g-factor, Sb-based III-V nanowires (NWs) attracted significant interests in high speed electronics, long-wavelength photodetectors and quantum superconductivity in the past decade. In this review, we aim to give an integrated summarization about the recent advances in binary as well as ternary Sb-based III-V NWs, starting from the fundamental properties, NWs growth mechanism, typical synthetic methods to their applications in transistors, photodetectors, and Majorana fermions detection. Up to now, famous NWs growth techniques of solid-source chemical vapor deposition (CVD), molecular beam epitaxy, metal organic vapor phase epitaxy and metal organic CVD etc have been adopted and developed for the controllable growth of Sb-based III-V NWs. Several parameters including heating temperature, III/V ratio of source materials, growth temperature, catalyst size and kinds, and growth substrate play important roles on the morphology, position, diameter distribution, growth orientation and crystal phase of Sb-based III-V NWs. Furthermore, we discuss the photoelectrical applications of Sb-based III-V NWs such as field-effect-transistors, tunnel diode, low-power inverter, and infrared detectors etc. Importantly, due to the strongest spin-orbit interaction and giant g-factor among all III-V semiconductors, InSb with the geometry of one-dimension NW is considered as the most promising candidate for the detection of Majorana fermions. In the end, we also summarize the main challenges remaining in the field and put forward some suggestions for the future development of Sb-based III-V NWs.

18.
F1000Res ; 6: 2159, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333258

RESUMO

Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that has been subject to intense scrutiny. NMD identifies and degrades subsets of normal RNAs, as well as abnormal mRNAs containing premature termination codons. A core factor in this pathway-UPF3B-is an adaptor protein that serves as an NMD amplifier and an NMD branch-specific factor. UPF3B is encoded by an X-linked gene that when mutated causes intellectual disability and is associated with neurodevelopmental disorders, including schizophrenia and autism. Neu-Yilik et al. now report a new function for UPF3B: it modulates translation termination. Using a fully reconstituted in vitro translation system, they find that UPF3B has two roles in translation termination. First, UPF3B delays translation termination under conditions that mimic premature translation termination. This could drive more efficient RNA decay by allowing more time for the formation of RNA decay-stimulating complexes. Second, UPF3B promotes the dissociation of post-termination ribosomal complexes that lack nascent peptide. This implies that UPF3B could promote ribosome recycling. Importantly, the authors found that UPF3B directly interacts with both RNA and the factors that recognize stop codons-eukaryotic release factors (eRFs)-suggesting that UPF3B serves as a direct regulator of translation termination. In contrast, a NMD factor previously thought to have a central regulatory role in translation termination-the RNA helicase UPF1-was found to indirectly interact with eRFs and appears to act exclusively in post-translation termination events, such as RNA decay, at least in vitro. The finding that an RNA decay-promoting factor, UFP3B, modulates translation termination has many implications. For example, the ability of UPF3B to influence the development and function of the central nervous system may be not only through its ability to degrade specific RNAs but also through its impact on translation termination and subsequent events, such as ribosome recycling.

19.
Elife ; 52016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27494274

RESUMO

Eukaryotic translation initiation involves two conserved DEAD-box RNA helicases, eIF4A and Ded1p. Here we show that S. cerevisiae eIF4A and Ded1p directly interact with each other and simultaneously with the scaffolding protein eIF4G. We delineate a comprehensive thermodynamic framework for the interactions between Ded1p, eIF4A, eIF4G, RNA and ATP, which indicates that eIF4A, with and without eIF4G, acts as a modulator for activity and substrate preferences of Ded1p, which is the RNA remodeling unit in all complexes. Our results reveal and characterize an unexpected interdependence between the two RNA helicases and eIF4G, and suggest that Ded1p is an integral part of eIF4F, the complex comprising eIF4G, eIF4A, and eIF4E.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/metabolismo , Mapas de Interação de Proteínas , RNA Fúngico/metabolismo
20.
Mol Cell ; 59(4): 541-52, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26212457

RESUMO

Most aspects of RNA metabolism involve DEAD-box RNA helicases, enzymes that bind and remodel RNA and RNA-protein complexes in an ATP-dependent manner. Here we show that the DEAD-box helicase Ded1p oligomerizes in the cell and in vitro, and unwinds RNA as a trimer. Two protomers bind the single-stranded region of RNA substrates and load a third protomer to the duplex, which then separates the strands. ATP utilization differs between the strand-separating protomer and those bound to the single-stranded region. Binding of the eukaryotic initiation factor 4G to Ded1p interferes with oligomerization and thereby modulates unwinding activity and RNA affinity of the helicase. Our data reveal a strict division of labor between the Ded1p protomers in the oligomer. This mode of oligomerization fundamentally differs from other helicases. Oligomerization represents a previously unappreciated level of regulation for DEAD-box helicase activities.


Assuntos
RNA Helicases DEAD-box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/química , Biocatálise , RNA Helicases DEAD-box/fisiologia , Hidrólise , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , RNA de Cadeia Dupla/química , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...