Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(40): 15812-15816, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36153846

RESUMO

The tris(pyridin-4-yl)amine ligand was found to exhibit a radical-actuated coloration phenomenon, and a novel copper-based color-changeable metal-organic framework (MOF) was synthesized via this photoactive ligand. After light irradiation, the photogenerated stable radicals in this framework induced increasing amplitude of magnetization (32%) at room temperature, being the largest enhancement among radical-based photochromic systems.

2.
Nat Commun ; 13(1): 2646, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551184

RESUMO

Achieving magnetic bistability with large thermal hysteresis is still a formidable challenge in material science. Here we synthesize a series of isostructural chain complexes using 9,10-anthracene dicarboxylic acid as a photoactive component. The electron transfer photochromic Mn2+ and Zn2+ compounds with photogenerated diradicals are confirmed by structures, optical spectra, magnetic analyses, and density functional theory calculations. For the Mn2+ analog, light irradiation changes the spin topology from a single Mn2+ ion to a radical-Mn2+ single chain, further inducing magnetic bistability with a remarkably wide thermal hysteresis of 177 K. Structural analysis of light irradiated crystals at 300 and 50 K reveals that the rotation of the anthracene rings changes the Mn1-O2-C8 angle and coordination geometries of the Mn2+ center, resulting in magnetic bistability with this wide thermal hysteresis. This work provides a strategy for constructing molecular magnets with large thermal hysteresis via electron transfer photochromism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...