Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
BMC Surg ; 24(1): 148, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734630

RESUMO

BACKGROUND & AIMS: Complications after laparoscopic liver resection (LLR) are important factors affecting the prognosis of patients, especially for complex hepatobiliary diseases. The present study aimed to evaluate the value of a three-dimensional (3D) printed dry-laboratory model in the precise planning of LLR for complex hepatobiliary diseases. METHODS: Patients with complex hepatobiliary diseases who underwent LLR were preoperatively enrolled, and divided into two groups according to whether using a 3D-printed dry-laboratory model (3D vs. control group). Clinical variables were assessed and complications were graded by the Clavien-Dindo classification. The Comprehensive Complication Index (CCI) scores were calculated and compared for each patient. Multivariable analysis was performed to determine the risk factors of postoperative complications. RESULTS: Sixty-two patients with complex hepatobiliary diseases underwent the precise planning of LLR. Among them, thirty-one patients acquired the guidance of a 3D-printed dry-laboratory model, and others were only guided by traditional enhanced CT or MRI. The results showed no significant differences between the two groups in baseline characters. However, compared to the control group, the 3D group had a lower incidence of intraoperative blood loss, as well as postoperative 30-day and major complications, especially bile leakage (all P < 0.05). The median score on the CCI was 20.9 (range 8.7-51.8) in the control group and 8.7 (range 8.7-43.4) in the 3D group (mean difference, -12.2, P = 0.004). Multivariable analysis showed the 3D model was an independent protective factor in decreasing postoperative complications. Subgroup analysis also showed that a 3D model could decrease postoperative complications, especially for bile leakage in patients with intrahepatic cholelithiasis. CONCLUSION: The 3D-printed models can help reduce postoperative complications. The 3D-printed models should be recommended for patients with complex hepatobiliary diseases undergoing precise planning LLR.


Assuntos
Laparoscopia , Hepatopatias , Complicações Pós-Operatórias , Impressão Tridimensional , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Laparoscopia/métodos , Laparoscopia/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Hepatopatias/cirurgia , Idoso , Doenças Biliares/prevenção & controle , Doenças Biliares/cirurgia , Doenças Biliares/etiologia , Hepatectomia/métodos , Hepatectomia/efeitos adversos , Adulto , Estudos Retrospectivos , Estudos de Coortes
2.
Asian J Surg ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38724372

RESUMO

BACKGROUND AND AIMS: The prognosis of patients with hepatocellular carcinoma (HCC) undergoing hepatectomy is unsatisfactory, especially for those with microvascular invasion (MVI). This study aimed to determine the impact of adjuvant transcatheter arterial chemoembolization (TACE) and Lenvatinib on the prognosis of patients with HCC and MVI after hepatectomy. METHODS: Patients diagnosed with HCC and MVI were reviewed, and stratified into four groups according to adjuvant TACE and/or Lenvatinib. Multivariate Cox regression analyses are used to determine independent risk factors. RESULTS: 346 patients were included, and divided into four groups (Group I, TACE+ Lenvatinib; Group II, Lenvatinib; Group III, TACE; Group IV, without adjuvant therapy). Multivariable analysis showed that compared to Group IV, Group I had the best effect on improving the overall survival (OS, HR 0.321, 95%CI 0.099-0.406, P = 0.001) and recurrence-free survival (RFS, HR 0.319, 95%CI 0.129-0.372, P = 0.001). Additionally, compared with Group II or Group III, Group I also can significantly improve the OS and RFS. There is no significant difference between Group II and Group III in OS and RFS. CONCLUSION: The combination of TACE and Lenvatinib should be considered for anti-recurrence therapy for patients with HCC and MVI after hepatectomy.

3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610088

RESUMO

The axons of neocortical pyramidal neurons are frequently myelinated. Heterogeneity in the topography of axonal myelination in the cerebral cortex has been attributed to a combination of electrophysiological activity, axonal morphology, and neuronal-glial interactions. Previously, we showed that axonal segment length and caliber are critical local determinants of fast-spiking interneuron myelination. However, the factors that determine the myelination of individual axonal segments along neocortical pyramidal neurons remain largely unexplored. Here, we used structured illumination microscopy to examine the extent to which axonal morphology is predictive of the topography of myelination along neocortical pyramidal neurons. We identified critical thresholds for axonal caliber and interbranch distance that are necessary, but not sufficient, for myelination of pyramidal cell axons in mouse primary somatosensory cortex (S1). Specifically, we found that pyramidal neuron axonal segments with a caliber < 0.24 µm or interbranch distance < 18.10 µm are rarely myelinated. Moreover, we further confirmed that these findings in mice are similar for human neocortical pyramidal cell myelination (caliber < 0.25 µm, interbranch distance < 19.00 µm), suggesting that this mechanism is evolutionarily conserved. Taken together, our findings suggest that axonal morphology is a critical correlate of the topography and cell-type specificity of neocortical myelination.


Assuntos
Neocórtex , Células Piramidais , Humanos , Animais , Camundongos , Axônios , Bainha de Mielina , Interneurônios
4.
mSystems ; : e0000424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591897

RESUMO

Seed endophytic microbiomes are shaped by host and environmental factors and play a crucial role in their host growth and health. Studies have demonstrated that host genotype, including hybridization, affects seed microbiomes. Heterosis features are also observed in root-associated microbiomes. It remains unclear, however, whether heterosis exists in seed endophytic microbiomes and whether hybrid microbiota provide noticeable advantages to host plant growth, especially to seed germination. Here, we investigated the structure of seed endophytic bacterial and fungal communities from three hybrid rice varieties and their respective parents using amplicon sequencing targeting 16S rRNA and ITS2 genes. Heterosis was found in diversity and composition of seed endophytic microbiomes in hybrids, which hosted more diverse communities and significantly higher abundances of plant growth-promoting taxa, such as Pseudomonas and Rhizobium genera compared with their parental lines. Co-occurrence network analysis revealed that there are potentially tighter microbial interactions in the hybrid seeds compared with their parent seeds. Finally, inoculation of seed-cultivable endophytes, isolated from hybrids, resulted in a greater promotion of seed germination compared with those isolated from parent lines. These findings suggest that heterosis exists not only in plant traits but also in seed endophytic microbiota, the latter in turn promotes seed germination, which offers valuable guidance for microbiome-assisted rice breeding.IMPORTANCEGenetic and physiological changes associated with plant hybridization have been studied for many crop species. Still, little is known about the impact of hybridization on the seed microbiota. In this study, we indicate that hybridization has a significant impact on the endophytic bacterial and fungal communities in rice seeds. The seed endophytic microbiomes of hybrids displayed distinct characteristics from those of their parental lines and exhibited potential heterosis features. Furthermore, the inoculation of seed-cultivable endophytes isolated from hybrids exhibited a greater promotion effect on seed germination compared with those isolated from the parents. Our findings make a valuable contribution to the emerging field of microbiome-assisted plant breeding, highlighting the potential for a targeted approach that aims to achieve not only desired plant traits but also plant-beneficial microbial communities on the seeds.

5.
Obes Surg ; 34(4): 1333-1342, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427150

RESUMO

BACKGROUND: Liver fibrosis is a predisposing factor for liver cancer. This study will investigate the predictive role of the Triglyceride-glucose and Gamma-glutamyl transferase index (TyG-GGT) as a non-invasive indicator of advanced liver fibrosis in individuals with obesity or overweight. METHOD: We enrolled patients who underwent metabolic and bariatric surgery as well as intraoperative liver biopsies at Zhejiang provincial people's hospital from August 2020 to March 2023. Clinical characteristics, comorbidities, laboratory data, and pathological variables of patients were collected and analysed. Then, we conducted logistics regression model to compare the performance of the TyG-GGT index with other 4 non-invasive models. RESULTS: A total of 65 patients were included in this study. 43(66.2%) of them were female, with the mean body mass index (BMI) of 39.0 ± 7.3 kg/m2. Meanwhile, 24(36.9%) patients were diagnosed with diabetes. Advanced liver fibrosis were observed in 16.9% of patients, while liver cirrhosis was found in 4.6% of patients. The multivariable logistics regression showed that TyG-GGT was an independent risk factor of advanced liver fibrosis (OR = 6.989, P = 0.049). Additionally, compared to another 4 non-invasive liver fibrosis models (NFS = 0.66, FIB4 = 0.65, METS-IR = 0.68, APRI = 0.65), TyG-GGT exhibits the highest AUC value of 0.75. CONCLUSIONS: More than one-third of patients undergoing metabolic and bariatric surgery are afflicted with nonalcoholic steatohepatitis (NASH), and a significant proportion exhibit advanced fibrosis. TyG-GGT was a potentially reliable predictor for screening individuals with overweight or obesity at high risk of advanced liver fibrosis, thus providing clinical guidance for early intervention in this targeted group.


Assuntos
Glicemia , Cirrose Hepática , Triglicerídeos , gama-Glutamiltransferase , Feminino , Humanos , Masculino , Fibrose , Cirrose Hepática/diagnóstico , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/sangue , Obesidade/complicações , Sobrepeso/sangue , Sobrepeso/complicações , Triglicerídeos/análise , Triglicerídeos/sangue , gama-Glutamiltransferase/análise , gama-Glutamiltransferase/sangue , Glicemia/análise , Glicemia/metabolismo
6.
Front Oncol ; 14: 1355927, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476361

RESUMO

Background: Xanthogranulomatous cholecystitis (XGC) and gallbladder carcinoma (GBC) share similar imaging and serological profiles, posing significant challenges in accurate preoperative diagnosis. This study aimed to identify reliable indicators and develop a predictive model to differentiate between XGC and GBC. Methods: This retrospective study involved 436 patients from Zhejiang Provincial People's Hospital and The Affiliated Lihuili Hospital of Ningbo University. Comprehensive preoperative imaging, including ultrasound, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and blood tests, were analyzed. Machine learning (Random Forest method) was employed for variable selection, and a multivariate logistic regression analysis was used to construct a nomogram for predicting GBC. Statistical analyses were performed using SPSS and RStudio software. Results: The study identified gender, Murphy's sign, absolute neutrophil count, glutamyl transpeptidase level, carcinoembryonic antigen level, and comprehensive imaging diagnosis as potential risk factors for GBC. A nomogram incorporating these factors demonstrated high predictive accuracy for GBC, outperforming individual or combined traditional diagnostic methods. External validation of the nomogram showed consistent results. Conclusion: The study successfully developed a predictive nomogram for distinguishing GBC from XGC with high accuracy. This model, integrating multiple clinical and imaging indicators, offers a valuable tool for clinicians in making informed diagnostic decisions. The findings advocate for the use of comprehensive preoperative evaluations combined with advanced analytical tools to improve diagnostic accuracy in complex medical conditions.

8.
J Ethnopharmacol ; 325: 117885, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331123

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Timosaponin BⅡ (TBⅡ) is one of the main active components of the traditional Chinese medicine Anemarrhena asphodeloides, and it is a steroidal saponin with various pharmacological activities such as anti-oxidation, anti-inflammatory and anti-apoptosis. However, its role in acute ulcerative colitis remains unexplored thus far. AIM OF THE STUDY: This study aims to investigate the protective effect of TBⅡ against dextran sulfate sodium (DSS)-induced ulcerative colitis in mice and elucidate its underlying mechanisms. METHODS: Wild-type (WT) and NLRP3 knockout (NLRP3-/-) mice were applied to evaluate the protective effect of TBⅡ in DSS-induced mice colitis. Pharmacological inhibition of NLRP3 or adenovirus-mediated NLRP3 overexpression in bone marrow-derived macrophages (BMDM) from WT mice and colonic epithelial HCoEpiC cells was used to assess the role of TBⅡ in LPS + ATP-induced cell model. RNA-seq, ELISA, western blots, immunofluorescence staining, and expression analysis by qPCR were performed to examine the alterations of colonic NLRP3 expression in DSS-induced colon tissues and LPS + ATP-induced cells, respectively. RESULTS: In mice with DSS-induced ulcerative colitis, TBⅡ treatment attenuated clinical symptoms, repaired the intestinal mucosal barrier, reduced inflammatory infiltration, and alleviated colonic inflammation. RNA-seq analysis and protein expression levels demonstrated that TBⅡ could prominently inhibit NLRP3 signaling. TBⅡ-mediated NLRP3 inhibition was associated with alleviating intestinal permeability and inflammatory response via the blockage of communication between epithelial cells and macrophages, probably in an NLRP3 inhibition mechanism. However, pharmacological inhibition of NLRP3 by MCC950 or Ad-NLRP3 mediated NLRP3 overexpression significantly impaired the TBⅡ-mediated anti-inflammatory effect. Mechanistically, TBⅡ-mediated NLRP3 inhibition may be partly associated with the suppression of NF-κB, a master pro-inflammatory factor for transcriptional regulation of NLRP3 expression in the priming step. Moreover, co-treatment TBⅡ with NF-κB inhibitor BAY11-7082 partly impaired TBⅡ-mediated NLRP3 inhibition, and consequently affected the IL-1ß mature and secretion. Importantly, TBⅡ-mediated amelioration was not further enhanced in NLPR3-/- mice. CONCLUSION: TBⅡ exerted a prominent protective effect against DSS-induced colitis via regulation of alleviation of intestinal permeability and inflammatory response via the blockage of crosstalk between epithelial cells and macrophages in an NLRP3-mediated inhibitory mechanism. These beneficial effects could make TBⅡ a promising drug for relieving colitis.


Assuntos
Colite Ulcerativa , Colite , Saponinas , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/metabolismo , Inflamassomos/metabolismo , Colite/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/efeitos adversos , Saponinas/farmacologia , Saponinas/uso terapêutico , Trifosfato de Adenosina/metabolismo , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Colo/metabolismo
9.
J Integr Plant Biol ; 66(2): 172-175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314481

RESUMO

Carotenoid isomerase activity and carotenoid content maintain the appropriate tiller number, photosynthesis, and grain yield. Interactions between the strigolactone and abscisic acid pathways regulates tiller formation.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Carotenoides/metabolismo , Grão Comestível/metabolismo , Isomerases/metabolismo
10.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242692

RESUMO

The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.


Assuntos
Cerebelo , Complexo Olivar Inferior , Camundongos , Animais , Núcleo Olivar/fisiologia , Núcleo Olivar/ultraestrutura , Transmissão Sináptica , Núcleos Cerebelares/fisiologia
11.
Plant Commun ; 5(1): 100673, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37596786

RESUMO

Grain size is an important determinant of grain yield in rice. Although dozens of grain size genes have been reported, the molecular mechanisms that control grain size remain to be fully clarified. Here, we report the cloning and characterization of GR5 (GRAIN ROUND 5), which is allelic to SMOS1/SHB/RLA1/NGR5 and encodes an AP2 transcription factor. GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion. We demonstrated that GR5 physically interacts with five Gγ subunit proteins (RGG1, RGG2, DEP1, GS3, and GGC2) and acts downstream of the G protein complex. Four downstream target genes of GR5 in grain development (DEP2, DEP3, DRW1, and CyCD5;2) were revealed and their core T/CGCAC motif identified by yeast one-hybrid, EMSA, and ChIP-PCR experiments. Our results revealed that GR5 interacts with Gγ subunits and cooperatively determines grain size by regulating the expression of downstream target genes. These findings provide new insight into the genetic regulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.


Assuntos
Oryza , Oryza/metabolismo , Redes Reguladoras de Genes , Grão Comestível/genética , Grão Comestível/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo
12.
Plant Biotechnol J ; 22(4): 915-928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37983630

RESUMO

Grain weight is an important determinant of grain yield. However, the underlying regulatory mechanisms for grain size remain to be fully elucidated. Here, we identify a rice mutant grain weight 9 (gw9), which exhibits larger and heavier grains due to excessive cell proliferation and expansion in spikelet hull. GW9 encodes a nucleus-localized protein containing both C2H2 zinc finger (C2H2-ZnF) and VRN2-EMF2-FIS2-SUZ12 (VEFS) domains, serving as a negative regulator of grain size and weight. Interestingly, the non-frameshift mutations in C2H2-ZnF domain result in increased plant height and larger grain size, whereas frameshift mutations in both C2H2-ZnF and VEFS domains lead to dwarf and malformed spikelet. These observations indicated the dual functions of GW9 in regulating grain size and floral organ identity through the C2H2-ZnF and VEFS domains, respectively. Further investigation revealed the interaction between GW9 and the E3 ubiquitin ligase protein GW2, with GW9 being the target of ubiquitination by GW2. Genetic analyses suggest that GW9 and GW2 function in a coordinated pathway controlling grain size and weight. Our findings provide a novel insight into the functional role of GW9 in the regulation of grain size and weight, offering potential molecular strategies for improving rice yield.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Ubiquitinação , Regulação da Expressão Gênica de Plantas/genética
13.
Int J Cancer ; 154(3): 530-537, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815300

RESUMO

Several observational studies have reported an association between obesity and primary liver cancer (PLC), while the causality behind this association and the comparison of the risk effects of different obesity indicators on PLC remain unclear. In this study, we performed two-sample Mendelian randomization (MR) analyses to assess the associations of genetically determined liver fat, visceral adipose tissue (VAT), and body mass index (BMI) with the risk of PLC. The summary statistics of exposures were obtained from two genome-wide association studies (GWASs) based on the UK Biobank (UKB) imaging cohort and the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. GWAS summary statistics for PLC were obtained from FinnGen consortium R7 release data, including 304 PLC cases and 218 488 controls. Inverse-variance weighted (IVW) was used as the primary analysis, and a series of sensitivity analyses were performed to further verify the robustness of these findings. IVW analysis highlighted a significant association of genetically determined liver fat (OR per SD increase: 7.14; 95% CI: 5.10-9.99; P = 2.35E-30) and VAT (OR per SD increase: 5.70; 95% CI: 1.32-24.72; P = .020) with PLC but not of BMI with PLC. The findings were further confirmed by a series of MR methods. No evidence of horizontal pleiotropy between these associations existed. Our study suggested that genetically determined liver fat and VAT rather than BMI were associated with an increased risk of PLC, which suggested that visceral fat distribution is more predictive of the clinical risk of PLC than common in vitro measures.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Hepáticas , Adulto , Humanos , Análise da Randomização Mendeliana , Obesidade/complicações , Obesidade/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único
14.
Front Immunol ; 14: 1268912, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022551

RESUMO

Objective: The global mortality rates have surged due to the ongoing coronavirus disease 2019 (COVID-19), leading to a worldwide catastrophe. Increasing incidents of patients suffering from cutaneous lupus erythematosus (CLE) exacerbations after either contracting COVID-19 or getting immunized against it, have been observed in recent research. However, the precise intricacies that prompt this unexpected complication are yet to be fully elucidated. This investigation seeks to probe into the molecular events inciting this adverse outcome. Method: Gene expression patterns from the Gene Expression Omnibus (GEO) database, specifically GSE171110 and GSE109248, were extracted. We then discovered common differentially expressed genes (DEGs) in both COVID-19 and CLE. This led to the creation of functional annotations, formation of a protein-protein interaction (PPI) network, and identification of key genes. Furthermore, regulatory networks relating to these shared DEGs and significant genes were constructed. Result: We identified 214 overlapping DEGs in both COVID-19 and CLE datasets. The following functional enrichment analysis of these DEGs highlighted a significant enrichment in pathways related to virus response and infectious disease in both conditions. Next, a PPI network was constructed using bioinformatics tools, resulting in the identification of 5 hub genes. Finally, essential regulatory networks including transcription factor-gene and miRNA-gene interactions were determined. Conclusion: Our findings demonstrate shared pathogenesis between COVID-19 and CLE, offering potential insights for future mechanistic investigations. And the identification of common pathways and key genes in these conditions may provide novel avenues for research.


Assuntos
COVID-19 , Lúpus Eritematoso Cutâneo , MicroRNAs , Humanos , Transcriptoma , COVID-19/genética , Biologia Computacional , Lúpus Eritematoso Cutâneo/genética
15.
J Contam Hydrol ; 259: 104262, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37944201

RESUMO

Intelligent prediction of water quality plays a pivotal role in water pollution control, water resource protection, emergency decision-making for sudden water pollution incidents, tracking and evaluation of water quality changes in river basins, and is crucial to ensuring water security. The primary methodology employed in this paper for water quality prediction is as follows: (1) utilizing the comprehensive pollution index method and Mann-Kendall (MK) trend analysis method, an assessment is made of the pollution status and change trend within the basin, while simultaneously extracting the principal water quality parameters based on their respective pollution share rates; (2) employing the spearman method, an analysis is conducted to identify the influential factors impacting each key parameter; (3) subsequently, a water quality parameter prediction model, based on Long Short-Term Memory (LSTM) analysis, is constructed using the aforementioned driving factor analysis outcomes. The developed LSTM model in this study showed good prediction performance. The average coefficient of determination (R2) of the prediction of crucial water quality parameters such as total nitrogen (TN) and dissolved oxygen (DO) reached 0.82 and 0.86 respectively. Additionally, the error analysis of WQI prediction results showed that >75% of the prediction errors were in the range of 0-0.15. The comparative analysis revealed that the LSTM model outperforms both the random forest (RF) model in time series prediction and demonstrates superior robustness and applicability compared to the AutoRegressive Moving Average with eXogenous inputs model (ARMAX). Hence, the model developed in this study offers valuable technical assistance for water quality prediction and early warning systems, particularly in economically disadvantaged regions with limited monitoring capabilities. This contribution facilitates resource optimization and promotes sustainable development.


Assuntos
Memória de Curto Prazo , Qualidade da Água , Fatores de Tempo , Poluição da Água , Análise Fatorial
16.
Rice (N Y) ; 16(1): 47, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874376

RESUMO

Soil salinization is one of the most common abiotic stresses of rice, which seriously affects the normal growth of rice. Breeding salt-tolerant varieties have become one of the important ways to ensure food security and sustainable agricultural development. However, the mechanisms underlying salt tolerance control still need to be clarified. In this study, we identified a mutant, termed salt-tolerant and small grains(sts), with salt tolerance and small grains. Gene cloning and physiological and biochemical experiments reveal that sts is a novel mutant allele of Mitogen-activated protein Kinase Kinase 4 (OsMKK4), which controls the grain size, and has recently been found to be related to salt tolerance in rice. Functional analysis showed that OsSTS is constitutively expressed throughout the tissue, and its proteins are localized to the nucleus, cell membrane, and cytoplasm. It was found that the loss of OsSTS function enhanced the salt tolerance of rice seedlings, and further studies showed that the loss of OsSTS function increased the ROS clearance rate of rice seedlings, independent of ionic toxicity. In order to explore the salt tolerance mechanism of sts, we found that the salt tolerance of sts is also regulated by ABA through high-throughput mRNA sequencing. Salt and ABA treatment showed that ABA might alleviate the inhibitory effect of salt stress on root length in sts. These results revealed new functions of grain size gene OsMKK4, expanded new research ideas related to salt tolerance mechanism and hormone regulation network, and provided a theoretical basis for salt-tolerant rice breeding.

17.
Nat Neurosci ; 26(11): 1916-1928, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814026

RESUMO

The neocortex and cerebellum interact to mediate cognitive functions. It remains unknown how the two structures organize into functional networks to mediate specific behaviors. Here we delineate activity supporting motor planning in relation to the mesoscale cortico-cerebellar connectome. In mice planning directional licking based on short-term memory, preparatory activity instructing future movement depends on the anterior lateral motor cortex (ALM) and the cerebellum. Transneuronal tracing revealed divergent and largely open-loop connectivity between the ALM and distributed regions of the cerebellum. A cerebellum-wide survey of neuronal activity revealed enriched preparatory activity in hotspot regions with conjunctive input-output connectivity to the ALM. Perturbation experiments show that the conjunction regions were required for maintaining preparatory activity and correct subsequent movement. Other cerebellar regions contributed little to motor planning despite input or output connectivity to the ALM. These results identify a functional cortico-cerebellar loop and suggest the cerebellar cortex selectively establishes reciprocal cortico-cerebellar communications to orchestrate motor planning.


Assuntos
Cerebelo , Córtex Motor , Camundongos , Animais , Cerebelo/fisiologia , Neurônios/fisiologia , Córtex Cerebelar , Córtex Motor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética
18.
BMC Plant Biol ; 23(1): 418, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689677

RESUMO

BACKGROUND: Mitochondrion is the key respiratory organ and participate in multiple anabolism and catabolism pathways in eukaryote. However, the underlying mechanism of how mitochondrial membrane proteins regulate leaf and grain development remains to be further elucidated. RESULTS: Here, a mitochondria-defective mutant narrow leaf and slender grain 1 (nlg1) was identified from an EMS-treated mutant population, which exhibits narrow leaves and slender grains. Moreover, nlg1 also presents abnormal mitochondria structure and was sensitive to the inhibitors of mitochondrial electron transport chain. Map-based cloning and transgenic functional confirmation revealed that NLG1 encodes a mitochondrial import inner membrane translocase containing a subunit Tim21. GUS staining assay and RT-qPCR suggested that NLG1 was mainly expressed in leaves and panicles. The expression level of respiratory function and auxin response related genes were significantly down-regulated in nlg1, which may be responsible for the declination of ATP production and auxin content. CONCLUSIONS: These results suggested that NLG1 plays an important role in the regulation of leaf and grain size development by maintaining mitochondrial homeostasis. Our finding provides a novel insight into the effects of mitochondria development on leaf and grain morphogenesis in rice.


Assuntos
Oryza , Oryza/genética , Membranas Mitocondriais , Folhas de Planta/genética , Mitocôndrias , Grão Comestível/genética , Ácidos Indolacéticos , Proteínas de Membrana/genética
19.
Materials (Basel) ; 16(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37570014

RESUMO

The magnetic domains of non-oriented electrical steel bearing cumulative thermal compressions made by a Gleeble 3500 Thermal System were observed using an atomic force microscope (AFM). The component forces, comprising the magnetic forces between the AFM probe and magnetic domains of the samples, along the freedom direction of the probe, were measured, and they formed the value fluctuation of the magnetic domains. The fluctuations of the magnetic domains were analyzed by examining the power spectral density (PSD) curves. The hysteresis curves of the samples were measured using a highly sensitive magnetic measurement system. An analysis of the magnetic force microscope (MFM) maps suggested that some magnetic domains were compressed into crushed and fragmented shapes, similar to the microstructure of deformed grains. Meanwhile, some were reconstructed within the thermal compressions, like dynamic recrystallization microstructures. Meaningfully, the MFM probe moved and deformed the proximal magnetic domains of tested samples within the region of its weak magnetic field. The peak positions of the magnetic domains with a high deformation rate were shifted and moved during the measuring processes by the weakly polarized probe. Both windward and leeward sides simultaneously expressed a slope towards each co-adjacent valley in the MFM maps and induced a statistical throbbing within a narrow band in the PSD curves. Thus, the MFM scanning mode was also analyzed and improved to obtain accurate MFM maps with low disturbances from the weak magnetic field of the probe. Swapping the order positions of the middle processes in the MFM scanning and adding a gliding step between them could offset the peak skewing of magnetic domains caused by the weakly polarized probe during MFM measurement process without incurring excessive replacement costs. Accumulative compression at a high rate (10 s-1) would crush magnetic domains into irregularly decreasing sizes with messy boundaries. This investigation provides an example of the complete relationships among deformations, magnetic domains, and magnetic properties.

20.
Nat Neurosci ; 26(8): 1394-1406, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474638

RESUMO

The brain generates predictive motor commands to control the spatiotemporal precision of high-velocity movements. Yet, how the brain organizes automated internal feedback to coordinate the kinematics of such fast movements is unclear. Here we unveil a unique nucleo-olivary loop in the cerebellum and its involvement in coordinating high-velocity movements. Activating the excitatory nucleo-olivary pathway induces well-timed internal feedback complex spike signals in Purkinje cells to shape cerebellar outputs. Anatomical tracing reveals extensive axonal collaterals from the excitatory nucleo-olivary neurons to downstream motor regions, supporting integration of motor output and internal feedback signals within the cerebellum. This pathway directly drives saccades and head movements with a converging direction, while curtailing their amplitude and velocity via the powerful internal feedback mechanism. Our finding challenges the long-standing dogma that the cerebellum inhibits the inferior olivary pathway and provides a new circuit mechanism for the cerebellar control of high-velocity movements.


Assuntos
Cerebelo , Núcleo Olivar , Núcleo Olivar/fisiologia , Cerebelo/fisiologia , Neurônios/fisiologia , Células de Purkinje/fisiologia , Axônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...