Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598371

RESUMO

Determining the location of myocardial infarction is crucial for clinical management and therapeutic stratagem. However, existing diagnostic tools either sacrifice ease of use or are limited by their spatial resolution. Addressing this, we aim to refine myocardial infarction localization via surface potential reconstruction of the ventricles in 12-lead electrocardiograms (ECG). A notable obstacle is the ill-posed nature of such reconstructions. To overcome this, we introduce the frequency-enhanced geometric-constrained iterative network (FGIN). FGIN begins by mining the latent features from ECG data across both time and frequency domains. Subsequently, it increases the data dimensionality of ECG and captures intricate features using convolutional layers. Finally, FGIN incorporates ventricular geometry as a constraint on surface potential distribution. It allocates variable weights to distinct edges. Experimental validation of FGIN confirms its efficacy over synthetic and clinical datasets. On the synthetic dataset, FGIN outperforms seven existing reconstruction methods, attaining the highest Pearson Correlation Coefficient of 0.8624, the lowest Root Mean Square Error of 0.1548, and the highest Structural Similarity Index Measure of 0.7988. On the clinical public dataset (2007 PhysioNet/Computers in Cardiology Challenge), FGIN achieves better localization results than other approaches, according to the clinical standard 17-segment model, achieving an average Segment Overlap of 87.2%. Clinical trials on 50 patients demonstrate FGIN's effectiveness, showing an average accuracy of 91.6% and an average Segment Overlap of 88.2%.

2.
Comput Med Imaging Graph ; 115: 102381, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38640620

RESUMO

Vascular structure segmentation in intravascular ultrasound (IVUS) images plays an important role in pre-procedural evaluation of percutaneous coronary intervention (PCI). However, vascular structure segmentation in IVUS images has the challenge of structure-dependent distractions. Structure-dependent distractions are categorized into two cases, structural intrinsic distractions and inter-structural distractions. Traditional machine learning methods often rely solely on low-level features, overlooking high-level features. This way limits the generalization of these methods. The existing semantic segmentation methods integrate low-level and high-level features to enhance generalization performance. But these methods also introduce additional interference, which is harmful to solving structural intrinsic distractions. Distraction cue methods attempt to address structural intrinsic distractions by removing interference from the features through a unique decoder. However, they tend to overlook the problem of inter-structural distractions. In this paper, we propose distraction-aware hierarchical learning (DHL) for vascular structure segmentation in IVUS images. Inspired by distraction cue methods for removing interference in a decoder, the DHL is designed as a hierarchical decoder that gradually removes structure-dependent distractions. The DHL includes global perception process, distraction perception process and structural perception process. The global perception process and distraction perception process remove structural intrinsic distractions then the structural perception process removes inter-structural distractions. In the global perception process, the DHL searches for the coarse structural region of the vascular structures on the slice of IVUS sequence. In the distraction perception process, the DHL progressively refines the coarse structural region of the vascular structures to remove structural distractions. In the structural perception process, the DHL detects regions of inter-structural distractions in fused structure features then separates them. Extensive experiments on 361 subjects show that the DHL is effective (e.g., the average Dice is greater than 0.95), and superior to ten state-of-the-art IVUS vascular structure segmentation methods.

3.
IEEE Trans Med Imaging ; PP2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329865

RESUMO

Multi-dimensional analysis in echocardiography has attracted attention due to its potential for clinical indices quantification and computer-aided diagnosis. It can utilize various information to provide the estimation of multiple cardiac indices. However, it still has the challenge of inter-task conflict. This is owing to regional confusion, global abnormalities, and time-accumulated errors. Task mapping methods have the potential to address inter-task conflict. However, they may overlook the inherent differences between tasks, especially for multi-level tasks (e.g., pixel-level, image-level, and sequence-level tasks). This may lead to inappropriate local and spurious task constraints. We propose cross-space consistency (CSC) to overcome the challenge. The CSC embeds multi-level tasks to the same-level to reduce inherent task differences. This allows multi-level task features to be consistent in a unified latent space. The latent space extracts task-common features and constrains the distance in these features. This constrains the task weight region that satisfies multiple task conditions. Extensive experiments compare the CSC with fifteen state-of-the-art echocardiographic analysis methods on five datasets (10,908 patients). The result shows that the CSC can provide left ventricular (LV) segmentation, (DSC = 0.932), keypoint detection (MAE = 3.06mm), and keyframe identification (accuracy = 0.943). These results demonstrate that our method can provide a multi-dimensional analysis of cardiac function and is robust in large-scale datasets.

4.
Biosens Bioelectron ; 250: 116052, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266616

RESUMO

Cell imaging technology is undoubtedly a powerful tool for studying single-cell heterogeneity due to its non-invasive and visual advantages. It covers microscope hardware, software, and image analysis techniques, which are hindered by low throughput owing to abundant hands-on time and expertise. Herein, a cellular nucleus image-based smarter microscope system for single-cell analysis is reported to achieve high-throughput analysis and high-content detection of cells. By combining the hardware of an automatic fluorescence microscope and multi-object recognition/acquisition software, we have achieved more advanced process automation with the assistance of Robotic Process Automation (RPA), which realizes a high-throughput collection of single-cell images. Automated acquisition of single-cell images has benefits beyond ease and throughout and can lead to uniform standard and higher quality images. We further constructed a single-cell image database-based convolutional neural network (Efficient Convolutional Neural Network, E-CNN) exceeding 20618 single-cell nucleus images. Computational analysis of large and complex data sets enhances the content and efficiency of single-cell analysis with the assistance of Artificial Intelligence (AI), which breaks through the super-resolution microscope's hardware limitation, such as specialized light sources with specific wavelengths, advanced optical components, and high-performance graphics cards. Our system can identify single-cell nucleus images that cannot be artificially distinguished with an accuracy of 95.3%. Overall, we build an ordinary microscope into a high-throughput analysis and high-content smarter microscope system, making it a candidate tool for Imaging cytology.


Assuntos
Inteligência Artificial , Técnicas Biossensoriais , Software , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Análise de Célula Única
5.
IEEE Trans Image Process ; 33: 910-925, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38224516

RESUMO

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction methods are still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.

6.
IEEE Trans Med Imaging ; 43(4): 1462-1475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38048241

RESUMO

Aortic segmentation from computed tomography (CT) is crucial for facilitating aortic intervention, as it enables clinicians to visualize aortic anatomy for diagnosis and measurement. However, aortic segmentation faces the challenge of variable geometry in space, as the geometric diversity of different diseases and the geometric transformations that occur between raw and measured images. Existing constraint-based methods can potentially solve the challenge, but they are hindered by two key issues: inaccurate definition of properties and inappropriate topology of transformation in space. In this paper, we propose a deformable constraint transport network (DCTN). The DCTN adaptively extracts aortic features to define intra-image constrained properties and guides topological implementation in space to constrain inter-image geometric transformation between raw and curved planar reformation (CPR) images. The DCTN contains a deformable attention extractor, a geometry-aware decoder and an optimal transport guider. The extractor generates variable patches that preserve semantic integrity and long-range dependency in long-sequence images. The decoder enhances the perception of geometric texture and semantic features, particularly for low-intensity aortic coarctation and false lumen, which removes background interference. The guider explores the geometric discrepancies between raw and CPR images, constructs probability distributions of discrepancies, and matches them with inter-image transformation to guide geometric topology in space. Experimental studies on 267 aortic subjects and four public datasets show the superiority of our DCTN over 23 methods. The results demonstrate DCTN's advantages in aortic segmentation for different types of aortic disease, for different aortic segments, and in the measurement of clinical indexes.


Assuntos
Aorta , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Aorta/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
7.
Radiology ; 309(2): e231149, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962501

RESUMO

Background CT is helpful in guiding the revascularization of chronic total occlusion (CTO), but manual prediction scores of percutaneous coronary intervention (PCI) success have challenges. Deep learning (DL) is expected to predict success of PCI for CTO lesions more efficiently. Purpose To develop a DL model to predict guidewire crossing and PCI outcomes for CTO using coronary CT angiography (CCTA) and evaluate its performance compared with manual prediction scores. MATERIALS AND METHODS: Participants with CTO lesions were prospectively identified from one tertiary hospital between January 2018 and December 2021 as the training set to develop the DL prediction model for PCI of CTO, with fivefold cross validation. The algorithm was tested using an external test set prospectively enrolled from three tertiary hospitals between January 2021 and June 2022 with the same eligibility criteria. All participants underwent preprocedural CCTA within 1 month before PCI. The end points were guidewire crossing within 30 minutes and PCI success of CTO.Results A total of 534 participants (mean age, 57.7 years ± 10.8 [SD]; 417 [78.1%] men) with 565 CTO lesions were included. In the external test set (186 participants with 189 CTOs), the DL model saved 85.0% of the reconstruction and analysis time of manual scores (mean, 73.7 seconds vs 418.2-466.9 seconds) and had higher accuracy than manual scores in predicting guidewire crossing within 30 minutes (DL, 91.0%; CT Registry of Chronic Total Occlusion Revascularization, 61.9%; Korean Multicenter CTO CT Registry [KCCT], 68.3%; CCTA-derived Multicenter CTO Registry of Japan (J-CTO), 68.8%; P < .05) and PCI success (DL, 93.7%; KCCT, 74.6%; J-CTO, 75.1%; P < .05). For DL, the area under the receiver operating characteristic curve was 0.97 (95% CI: 0.89, 0.99) for the training test set and 0.96 (95% CI: 0.90, 0.98) for the external test set. Conclusion The DL prediction model accurately predicted the percutaneous recanalization outcomes of CTO lesions and increased the efficiency of noninvasively grading the difficulty of PCI. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Pundziute-do Prado in this issue.


Assuntos
Aprendizado Profundo , Intervenção Coronária Percutânea , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Tomografia Computadorizada por Raios X , Idoso , Estudos Multicêntricos como Assunto
8.
Artigo em Inglês | MEDLINE | ID: mdl-37843998

RESUMO

Computerized tomography (CT) is a clinically primary technique to differentiate benign-malignant pulmonary nodules for lung cancer diagnosis. Early classification of pulmonary nodules is essential to slow down the degenerative process and reduce mortality. The interactive paradigm assisted by neural networks is considered to be an effective means for early lung cancer screening in large populations. However, some inherent characteristics of pulmonary nodules in high-resolution CT images, e.g., diverse shapes and sparse distribution over the lung fields, have been inducing inaccurate results. On the other hand, most existing methods with neural networks are dissatisfactory from a lack of transparency. In order to overcome these obstacles, a united framework is proposed, including the classification and feature visualization stages, to learn distinctive features and provide visual results. Specifically, a bilateral scheme is employed to synchronously extract and aggregate global-local features in the classification stage, where the global branch is constructed to perceive deep-level features and the local branch is built to focus on the refined details. Furthermore, an encoder is built to generate some features, and a decoder is constructed to simulate decision behavior, followed by the information bottleneck viewpoint to optimize the objective. Extensive experiments are performed to evaluate our framework on two publicly available datasets, namely, 1) the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) and 2) the Lung and Colon Histopathological Image Dataset (LC25000). For instance, our framework achieves 92.98% accuracy and presents additional visualizations on the LIDC. The experiment results show that our framework can obtain outstanding performance and is effective to facilitate explainability. It also demonstrates that this united framework is a serviceable tool and further has the scalability to be introduced into clinical research.

9.
Comput Methods Programs Biomed ; 236: 107547, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126888

RESUMO

BACKGROUND AND OBJECTIVE: Survival prediction of heart failure patients is critical to improve the prognostic management of the cardiovascular disease. The existing survival prediction methods focus on the clinical information while lacking the cardiac motion information. we propose a motion-based analysis method to predict the survival risk of heart failure patients for aiding clinical diagnosis and treatment. METHODS: We propose a motion-based analysis method for survival prediction of heart failure patients. First, our method proposes the hierarchical spatial-temporal structure to capture the myocardial border. It promotes the model discrimination on border features. Second, our method explores the dense optical flow structure to capture motion fields. It improves the tracking capability on cardiac images. The cardiac motion information is obtained by fusing boundary information and motion fields of cardiac images. Finally, our method proposes the multi-modality deep-cox structure to predict the survival risk of heart failure patients. It improves the survival probability of heart failure patients. RESULTS: The motion-based analysis method is confirmed to be able to improve the survival prediction of heart failure patients. The precision, recall, F1-score, and C-index are 0.8519, 0.8333, 0.8425, and 0.8478, respectively, which is superior to other state-of-the-art methods. CONCLUSIONS: The experimental results show that the proposed model can effectively predict survival risk of heart failure patients. It facilitates the application of robust clinical treatment strategies.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/diagnóstico , Coração , Movimento (Física) , Miocárdio
10.
IEEE J Biomed Health Inform ; 27(7): 3314-3325, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37130256

RESUMO

Vessel contour detection (VCD) in intravascular images is important for the quantitative assessment of vessels. However, it is still a challenging task due to a high degree of morphology variability. Images from a single modality lack sufficient information on the vessel morphology due to the natural limitation of the imaging capability. Therefore, the single-modality VCD methods have difficulty extracting sufficient morphological information. Cross-modality methods have the potential to overcome morphology variability by extracting more information from different modalities. However, they still face the difficulty of the domain discrepancy, i.e., feature space discrepancy and label space inconsistency. In this paper, we aim to address the domain discrepancy for VCD. To overcome label space inconsistency, our method divides the label space into private label space and shared label space. It constructs subdomains for the private label space and the shared label space, and minimizes the task risk at the subdomain level. To overcome feature space discrepancy, it extracts domain-invariant features via domain adaptation between the subdomains. Finally, it uses the domain-invariant features as auxiliary information for each subdomain. Extensive experiments on 130 IVUS sequences (135663 images) and 124 OCT sequences (39857 images) show that our method is effective (e.g., the Dice index [Formula: see text] 0.949), and superior to the nineteen state-of-the-art VCD methods.

11.
IEEE Trans Med Imaging ; 42(6): 1720-1734, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37021848

RESUMO

Convolutional neural networks (CNNs) have made enormous progress in medical image segmentation. The learning of CNNs is dependent on a large amount of training data with fine annotations. The workload of data labeling can be significantly relieved via collecting imperfect annotations which only match the underlying ground truths coarsely. However, label noises which are systematically introduced by the annotation protocols, severely hinders the learning of CNN-based segmentation models. Hence, we devise a novel collaborative learning framework in which two segmentation models cooperate to combat label noises in coarse annotations. First, the complementary knowledge of two models is explored by making one model clean training data for the other model. Secondly, to further alleviate the negative impact of label noises and make sufficient usage of the training data, the specific reliable knowledge of each model is distilled into the other model with augmentation-based consistency constraints. A reliability-aware sample selection strategy is incorporated for guaranteeing the quality of the distilled knowledge. Moreover, we employ joint data and model augmentations to expand the usage of reliable knowledge. Extensive experiments on two benchmarks showcase the superiority of our proposed method against existing methods under annotations with different noise levels. For example, our approach can improve existing methods by nearly 3% DSC on the lung lesion segmentation dataset LIDC-IDRI under annotations with 80% noise ratio. Code is available at: https://github.com/Amber-Believe/ReliableMutualDistillation.


Assuntos
Destilação , Redes Neurais de Computação , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador
12.
IEEE Trans Med Imaging ; 42(6): 1859-1874, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37022266

RESUMO

The long acquisition time has limited the accessibility of magnetic resonance imaging (MRI) because it leads to patient discomfort and motion artifacts. Although several MRI techniques have been proposed to reduce the acquisition time, compressed sensing in magnetic resonance imaging (CS-MRI) enables fast acquisition without compromising SNR and resolution. However, existing CS-MRI methods suffer from the challenge of aliasing artifacts. This challenge results in the noise-like textures and missing the fine details, thus leading to unsatisfactory reconstruction performance. To tackle this challenge, we propose a hierarchical perception adversarial learning framework (HP-ALF). HP-ALF can perceive the image information in the hierarchical mechanism: image-level perception and patch-level perception. The former can reduce the visual perception difference in the entire image, and thus achieve aliasing artifact removal. The latter can reduce this difference in the regions of the image, and thus recover fine details. Specifically, HP-ALF achieves the hierarchical mechanism by utilizing multilevel perspective discrimination. This discrimination can provide the information from two perspectives (overall and regional) for adversarial learning. It also utilizes a global and local coherent discriminator to provide structure information to the generator during training. In addition, HP-ALF contains a context-aware learning block to effectively exploit the slice information between individual images for better reconstruction performance. The experiments validated on three datasets demonstrate the effectiveness of HP-ALF and its superiority to the comparative methods.


Assuntos
Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Artefatos , Percepção Visual , Processamento de Imagem Assistida por Computador/métodos
13.
Comput Biol Med ; 157: 106743, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934532

RESUMO

The 2D projection space-based motion compensation reconstruction (2D-MCR) is a kind of representative method for 3D reconstruction of rotational coronary angiography owing to its high efficiency. However, due to the lack of accurate motion estimation of the overlapping projection pixels, existing 2D-MCR methods may still have a certain level of under-sampling artifacts or lose accuracy for cases with strong cardiac motion. To overcome this, in this study, we proposed a motion estimation approach based on projective information disentanglement (PID-ME) for 3D reconstruction of rotational coronary angiography. The reconstruction method adopts the framework of 2D-MCR, which is referred to as 2D-PID-MCR. The PID-ME consists of two parts: generation of the reference projection sequence based on the fast simplified distance driven projector (FSDDP) algorithm, motion estimation and correction based on the projective average minimal distance measure (PAMD) model. The FSDDP algorithm generates the reference projection sequence faster and accelerates the whole reconstruction greatly. The PAMD model can disentangle the projection information effectively and estimate the motion of both overlapping and non-overlapping projection pixels accurately. The main contribution of this study is the construction of 2D-PID-MCR to overcome the inherent limitations of the existing 2D-MCR method. Simulated and clinical experiments show that the PID-ME, consisting of FSDDP and PAMD, can estimate the motion of the projection sequence data accurately and efficiently. Our 2D-PID-MCR method outperforms the state-of-the-art approaches in terms of accuracy and real-time performance.


Assuntos
Algoritmos , Imageamento Tridimensional , Angiografia Coronária/métodos , Imageamento Tridimensional/métodos , Movimento (Física) , Artefatos
14.
IEEE Trans Med Imaging ; 42(3): 864-879, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36327189

RESUMO

Main coronary segmentation from the X-ray angiography images is important for the computer-aided diagnosis and treatment of coronary disease. However, it confronts the challenge at three different image granularities (the semantic, surrounding, and local levels). The challenge includes the semantic confusion between the main and collateral vessels, low contrast between the foreground vessel and background surroundings, and local ambiguity near the vessel boundaries. The traditional hand-crafted feature-based methods may be insufficient because they may lack the semantic relationship information and may not distinguish the main and collateral vessels. The existing deep learning-based methods seem to have issues due to the deficiency in the long-distance semantic relationship capture, the foreground and background interference adaptability, and the boundary detail information preservation. To solve the main coronary segmentation challenge, we propose the progressive perception learning (PPL) framework to inspect these three different image granularities. Specifically, the PPL contains the context, interference, and boundary perception modules. The context perception is designed to focus on the main coronary vessel based on the semantic dependence capture among different coronary segments. The interference perception is designed to purify the feature maps based on the foreground vessel enhancement and background artifact suppression. The boundary perception is designed to highlight the boundary details based on boundary feature extraction through the intersection between the foreground and background predictions. Extensive experiments on 1085 subjects show that the PPL is effective (e.g., the overall Dice is greater than 95%), and superior to thirteen state-of-the-art coronary segmentation methods.


Assuntos
Angiografia , Doença da Artéria Coronariana , Humanos , Raios X , Coração , Percepção
15.
IEEE J Biomed Health Inform ; 27(1): 409-420, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219660

RESUMO

Iodinated contrast medium (ICM) dose reduction is beneficial for decreasing potential health risk to renal-insufficiency patients in CT scanning. Due to the low-intensity vessel in ultra-low-dose-ICM CT angiography, it cannot provide clinical diagnosis of vascular diseases. Angiography reconstruction for ultra-low-dose-ICM CT can enhance vascular intensity for directly vascular diseases diagnosis. However, the angiography reconstruction is challenging since patient individual differences and vascular disease diversity. In this paper, we propose a Multiple Adversarial Learning based Angiography Reconstruction (i.e., MALAR) framework to enhance vascular intensity. Specifically, a bilateral learning mechanism is developed for mapping a relationship between source and target domains rather than the image-to-image mapping. Then, a dual correlation constraint is introduced to characterize both distribution uniformity from across-domain features and sample inconsistency within domain simultaneously. Finally, an adaptive fusion module by combining multi-scale information and long-range interactive dependency is explored to alleviate the interference of high-noise metal. Experiments are performed on CT sequences with different ICM doses. Quantitative results based on multiple metrics demonstrate the effectiveness of our MALAR on angiography reconstruction. Qualitative assessments by radiographers confirm the potential of our MALAR for the clinical diagnosis of vascular diseases.


Assuntos
Meios de Contraste , Doenças Vasculares , Humanos , Tomografia Computadorizada por Raios X/métodos , Angiografia por Tomografia Computadorizada/métodos , Angiografia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-36441897

RESUMO

Vessel border detection in IVUS images is essential for coronary disease diagnosis. It helps to obtain the clinical indices on the inner vessel morphology to indicate the stenosis. However, the existing methods suffer the challenge of scale-dependent interference. Early methods usually rely on the hand-crafted features, thus not robust to this interference. The existing deep learning methods are also ineffective to solve this challenge, because these methods aggregate multi-scale features in the top-down way. This aggregation may bring in interference from the non-adjacent scale. Besides, they only combine the features in all scales, and thus may weaken their complementary information. We propose the scale mutualized perception to solve this challenge by considering the adjacent scales mutually to preserve their complementary information. First, the adjacent small scales contain certain semantics to locate different vessel tissues. Then, they can also perceive the global context to assist the representation of the local context in the adjacent large scale, and vice versa. It helps to distinguish the objects with similar local features. Second, the adjacent large scales provide detailed information to refine the vessel boundaries. The experiments show the effectiveness of our method in 153 IVUS sequences, and its superiority to ten state-of-the-art methods.

17.
IEEE Trans Med Imaging ; 41(12): 3799-3811, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35905069

RESUMO

Tissue segmentation is the mainstay of pathological examination, whereas the manual delineation is unduly burdensome. To assist this time-consuming and subjective manual step, researchers have devised methods to automatically segment structures in pathological images. Recently, automated machine and deep learning based methods dominate tissue segmentation research studies. However, most machine and deep learning based approaches are supervised and developed using a large number of training samples, in which the pixel-wise annotations are expensive and sometimes can be impossible to obtain. This paper introduces a novel unsupervised learning paradigm by integrating an end-to-end deep mixture model with a constrained indicator to acquire accurate semantic tissue segmentation. This constraint aims to centralise the components of deep mixture models during the calculation of the optimisation function. In so doing, the redundant or empty class issues, which are common in current unsupervised learning methods, can be greatly reduced. By validation on both public and in-house datasets, the proposed deep constrained Gaussian network achieves significantly (Wilcoxon signed-rank test) better performance (with the average Dice scores of 0.737 and 0.735, respectively) on tissue segmentation with improved stability and robustness, compared to other existing unsupervised segmentation approaches. Furthermore, the proposed method presents a similar performance (p-value >0.05) compared to the fully supervised U-Net.


Assuntos
Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos
18.
Patterns (N Y) ; 3(6): 100498, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35755869

RESUMO

Decreasing projection views to a lower X-ray radiation dose usually leads to severe streak artifacts. To improve image quality from sparse-view data, a multi-domain integrative Swin transformer network (MIST-net) was developed and is reported in this article. First, MIST-net incorporated lavish domain features from data, residual data, image, and residual image using flexible network architectures, where a residual data and residual image sub-network was considered as a data consistency module to eliminate interpolation and reconstruction errors. Second, a trainable edge enhancement filter was incorporated to detect and protect image edges. Third, a high-quality reconstruction Swin transformer (i.e., Recformer) was designed to capture image global features. The experimental results on numerical and real cardiac clinical datasets with 48 views demonstrated that our proposed MIST-net provided better image quality with more small features and sharp edges than other competitors.

19.
Med Phys ; 49(1): 583-597, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34792807

RESUMO

PURPOSE: Coronary outlet resistance is influenced by the quantification and distribution of resting coronary blood flow. It is crucial for a more physiologically accurate estimation of fractional flow reserve (FFR) derived from computed tomography angiography (CTA), referred to as FFRCT. This study presents a physiologically personalized (PP)-based coronary blood flow model involving the outlet boundary condition (BC) and a standardized outlet truncation strategy to estimate the outlet resistance and FFRCT. METHODS: In this study, a total of 274 vessels were retrospectively collected from 221 patients who underwent coronary CTA and invasive FFR within 14 days. For FFRCT determination, we have employed a PP-based outlet BC model involving personalized physiological parameters and left ventricular mass (LVM) to quantify resting coronary blood flow. We evaluated the improvement achieved in the diagnostic performance of FFRCT by using the PP-based outlet BC model relative to the LVM-based model, with respect to the invasive FFR. Additionally, in order to evaluate the impact of the outlet truncation strategy on FFRCT, 68 vessels were randomly selected and analyzed independently by two operators, by using two different outlet truncation strategies at 1-month intervals. RESULTS: The per-vessel diagnostic performance of the PP-based outlet BC model was improved, based on invasive FFR as reference, compared to the LVM-based model: (i) accuracy/sensitivity/specificity: 91.2%/90.4%/91.8% versus 86.5%/84.6%/87.6%, for the entire dataset of 274 vessels, (ii) accuracy/sensitivity/specificity: 88.7%/82.4%/90.4% versus 82.4%/ 76.5%/84.0%, for moderately stenosis lesions. The standardized outlet truncation strategy showed good repeatability with the Kappa coefficient of 0.908. CONCLUSIONS: It has been shown that our PP-based outlet BC model and standardized outlet truncation strategy can improve the diagnostic performance and repeatability of FFRCT.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Hemodinâmica , Humanos , Valor Preditivo dos Testes , Estudos Retrospectivos
20.
Med Image Anal ; 73: 102170, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380105

RESUMO

Obtaining manual labels is time-consuming and labor-intensive on cardiac image sequences. Few-shot segmentation can utilize limited labels to learn new tasks. However, it suffers from two challenges: spatial-temporal distribution bias and long-term information bias. These challenges derive from the impact of the time dimension on cardiac image sequences, resulting in serious over-adaptation. In this paper, we propose the multi-level semantic adaptation (MSA) for few-shot segmentation on cardiac image sequences. The MSA addresses the two biases by exploring the domain adaptation and the weight adaptation on the semantic features in multiple levels, including sequence-level, frame-level, and pixel-level. First, the MSA proposes the dual-level feature adjustment for domain adaptation in spatial and temporal directions. This adjustment explicitly aligns the frame-level feature and the sequence-level feature to improve the model adaptation on diverse modalities. Second, the MSA explores the hierarchical attention metric for weight adaptation in the frame-level feature and the pixel-level feature. This metric focuses on the similar frame and the target region to promote the model discrimination on the border features. The extensive experiments demonstrate that our MSA is effective in few-shot segmentation on cardiac image sequences with three modalities, i.e. MR, CT, and Echo (e.g. the average Dice is 0.9243), as well as superior to the ten state-of-the-art methods.


Assuntos
Processamento de Imagem Assistida por Computador , Semântica , Coração/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...