Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 851(Pt 2): 158195, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995170

RESUMO

The presence of antibiotics in the aqueous environment can alter the water microbiome, inducing antimicrobial resistance genes. Hence, the occurrence of 18 antibiotics belonging to sulfonamides, fluoroquinolones, tetracyclines, phenicols, and macrolides classes were investigated in surface water, groundwater, and sewage treatment plants in Chennai city and the suburbs. Fluoroquinolones had the maximum detection frequency in both influent and effluent samples of urban and suburban STPs, with ofloxacin and ciprofloxacin showing the highest influent concentrations. Erythromycin was the predominant antibiotic in surface water samples with an average concentration of 194.4 ng/L. All the detected antibiotic concentrations were higher in the Buckingham Canal compared to those in Adyar and Cooum rivers, possibly due to direct sewer outfalls in the canal. In groundwater samples, ciprofloxacin showed the highest levels with an average of 20.48 ng/L and the concentrations were comparable to those of surface water. The average sulfamethazine concentration in groundwater (5.2 ng/L) was found to be slightly higher than that of the surface water and much higher than the STP influent concentrations. High levels of ciprofloxacin and sulfamethazine in groundwater may be because of their high solubility and wide use. Moreover, erythromycin was completely removed after treatment in urban STPs; FQs showed relatively lesser removal efficiency (2.4-54%) in urban STPs and (8-44%) in suburban STP. Tetracyclines and phenicols were not detected in any of the samples. Ciprofloxacin and azithromycin in surface water pose a high risk in terms of estimated antibiotic resistance. This study revealed that the measured surface water concentration of antibiotics were 500 times higher for some compounds than the predicted calculated concentrations from STP effluents. Therefore, we suspect the direct sewage outlets or open drains might play an important role in contaminating surface water bodies in Chennai city.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos/análise , Esgotos , Monitoramento Ambiental , Sulfametazina , Azitromicina , Poluentes Químicos da Água/análise , Índia , Fluoroquinolonas/análise , Tetraciclinas/análise , Ofloxacino/análise , Macrolídeos/análise , Eritromicina , Medição de Risco , Água , Ciprofloxacina
2.
Environ Geochem Health ; 44(11): 3991-4005, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34806152

RESUMO

This study is the first attempt to assess the presence of 16 priority polycyclic aromatic hydrocarbons (PAHs) enlisted by the US Environmental Protection Agency in PM2.5 and PM10 from industrial areas of Odisha State, India. During 2017-2018, bimonthly sampling of PM10 and PM2.5 was carried out for 24 h in the industrial and mining areas of Jharsuguda and Angul in Odisha during the pre-monsoon, monsoon, and post monsoon seasons. Highest mean concentration of ∑16PAHs in PM2.5 was observed during the post monsoon (170 ng/m3) period followed by pre-monsoon (48 ng/m3) and monsoon (16 ng/m 3) periods, respectively. A similar trend of ∑16PAHs was also observed in PM10 with higher levels observed during post monsoon (286 ng/m3) followed by pre-monsoon (81 ng/m3) and monsoon (27 ng/m3) seasons. Diagnostic ratios and principal component analysis suggested diesel, gasoline and coal combustion as the major contributors of atmospheric PAH pollution in Odisha. Back trajectory analysis revealed that PAH concentration was affected majorly by air masses originating from the northwest direction traversing through central India. Toxic equivalents ranged between 0.24 and 94.13 ng TEQ/m3. In our study, the incremental lifetime cancer risk ranged between 10-5 and 10-3, representing potential cancer risk.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado/análise , Poluentes Atmosféricos/análise , Gasolina/análise , Monitoramento Ambiental , Índia , Estações do Ano , Carvão Mineral/análise , Medição de Risco , China
3.
Sci Total Environ ; 810: 152200, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890663

RESUMO

Endocrine-disrupting chemicals (EDCs) such as phthalic acid esters (PAEs) and bisphenol A (BPA) are the most widely used plastic additives in polymeric materials. These EDCs are ubiquitously distributed in the environment. Hence selected PAEs and BPA were investigated in twenty-five food types and drinking water (supply and packaged) from the metropolitan city, Delhi, and the peri-urban areas of a non-metropolitan city, Dehradun. Except cabbage and orange, the sum of thirteen PAEs (∑13PAEs) and BPA in all the other food types were significantly higher in Delhi over Dehradun (p < 0.01). Highest mean ∑13PAEs (665 ng/g) and BPA (73 ng/g) were observed in cottage cheese and potatoes, respectively followed by fish (PAEs - 477 ng/g, BPA - 16 ng/g). Supply water from the west zone of Delhi was found to contain the highest concentration of BPA (309 ng/L) and ∑13PAEs (5765 ng/L) with the dominance of diethyl phthalate (DEP). Based on the compositional profile and compound-wise principal component analysis, environmental contamination and food processing were attributed as significant sources of most priority PAEs in food samples. Di-ethyl hexyl phthalate (DEHP) was over 100-fold higher in the bottled water from local brands than composite bottled water samples. Packaging material was identified as a source for di-n-butyl phthalate (DnBP) in packaged food. This study observed the highest estimated daily dietary intake (EDI) in the high-fat-containing food products viz., cottage cheese, and fish from north Delhi. High bioaccumulation of BPA can be a possible reason for elevated EDI in vegetables and local fish of Delhi. Unlike Dehradun, EDI for ∑13PAEs and BPA was slightly higher for the non-vegetarian adult when compared to the vegetarian adult. DEHP and DnBP exhibited the highest estimated estrogenic potential for bottled water from local brands. Dietary exposure due to six priority PAEs contamination in food stuffs was two to four-fold higher in Delhi than Dehradun for adult man and woman.


Assuntos
Disruptores Endócrinos , Ácidos Ftálicos , Adulto , Animais , China , Dibutilftalato , Exposição Dietética , Disruptores Endócrinos/análise , Ésteres , Feminino , Humanos , Masculino , Plásticos
4.
Environ Geochem Health ; 43(5): 2105-2120, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33392898

RESUMO

Conversion of agricultural fields into the industrial corridor under the State Industries Promotion Corporation of Tamil Nadu Limited (SIPCOT) necessitated the investigation of soil-borne organic contaminants. This study is the first attempt to evaluate the occurrence of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in soils from Mambakkam and Cheyyar SIPCOT belt, along the residential, industrial and agricultural transects. Concentrations of Σ28PCBs, Σ16PAHs and OCPs were in the range 0.3-9 ng/g, 33-2934 ng/g and nd-81.4 ng/g, respectively. Residential areas showed higher OCP concentrations than other site types, probably due to their frequent use in vector control programmes. DDT isomers and α-isomer of endosulfan showed low concentrations indicating past usage of these OCPs. Principal component analysis indicated that high-temperature combustion and industrial processes might be the major sources of high molecular weight PAHs, while low-temperature combustion processes might be responsible for low molecular weight PAHs. PCBs in soil were probably attributed to unaccounted combustion processes of e-waste in the region. Carcinogenic PAHs and Σ28PCBs were higher in the industrial sites. Mean Σ28PCBs at Mambakkam (4.8 ng/g) was significantly higher (p < 0.05) than that at the incipient industrial corridor Cheyyar (2.7 ng/g). Lower chlorinated PCBs (3-Cl and 4-Cl) amounted to more than half of Σ28PCBs in 75% of the sites. Total toxic equivalents (TEQs) of PAHs (total BaPeq) were found to be maximum in industrial areas. Maximum contribution to TEQs due to dioxin-like-PCBs was from PCB-157, followed by PCB-189.


Assuntos
Hidrocarbonetos Clorados/análise , Poluentes do Solo/análise , Agricultura , Dioxinas/análise , Monitoramento Ambiental , Humanos , Hidrocarbonetos Clorados/toxicidade , Índia , Indústrias , Praguicidas/análise , Praguicidas/toxicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Análise de Componente Principal , Medição de Risco , Solo/química , Poluentes do Solo/toxicidade
5.
Environ Sci Process Impacts ; 21(6): 999-1010, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31115391

RESUMO

The objective of this study was to assess the persistence and transport of atrazine at high infiltration rates expected from higher intensity precipitation associated with climate change scenarios in the midwestern U.S. The transport and transformation of atrazine was monitored in column experiments at high infiltration rates (64-119 mm d-1) associated with increased precipitation intensity. The optimum linear sorption and the lumped Monod biokinetic parameters were determined by inverting observed break-through curves (BTCs) using the advection-dispersion-sorption-degradation model. Batch microcosm studies were also conducted to examine the effect of moisture content (5%, 15% and 25%) on atrazine degradation and support the column results. BTCs from both soil types with continuous atrazine input showed a characteristic pattern of a pulse input i.e. lag phase prior to rapid atrazine degradation. The rate of atrazine leaching at higher infiltration rates was not fast enough to counteract the effect of enhanced degradation. Higher infiltration rates enriched the distribution of hydroxyatrazine in the soil profile for sandy loam, but their effect was minimal in loam soil. The pattern of degradation obtained in batch microcosms agreed with the column results. In both soils, mean half-life of atrazine was lower (4-8 days) at high soil moisture contents. Under future climate change scenarios, where more intense precipitation is likely to result in higher infiltration rates and increased soil moisture, the potential for groundwater pollution from atrazine may be reduced, especially in areas with a long history of atrazine application to soil.


Assuntos
Atrazina/metabolismo , Herbicidas/metabolismo , Poluentes do Solo/metabolismo , Agricultura , Biodegradação Ambiental , Mudança Climática , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...