Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 33: 572-586, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37637209

RESUMO

Duchenne muscular dystrophy is an X-linked monogenic disease caused by mutations in the dystrophin gene (DMD) characterized by progressive muscle weakness, leading to loss of ambulation and decreased life expectancy. Since the current standard of care for Duchenne muscular dystrophy is to merely treat symptoms, there is a dire need for treatment modalities that can correct the underlying genetic mutations. While several gene replacement therapies are being explored in clinical trials, one emerging approach that can directly correct mutations in genomic DNA is base editing. We have recently developed CRISPR-SKIP, a base editing strategy to induce permanent exon skipping by introducing C > T or A > G mutations at splice acceptors in genomic DNA, which can be used therapeutically to recover dystrophin expression when a genomic deletion leads to an out-of-frame DMD transcript. We now demonstrate that CRISPR-SKIP can be adapted to correct some forms of Duchenne muscular dystrophy by disrupting the splice acceptor in human DMD exon 45 with high efficiency, which enables open reading frame recovery and restoration of dystrophin expression. We also demonstrate that AAV-delivered split-intein base editors edit the splice acceptor of DMD exon 45 in cultured human cells and in vivo, highlighting the therapeutic potential of this strategy.

2.
Tissue Eng Part A ; 29(21-22): 557-568, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37463097

RESUMO

Tissue-engineered skeletal muscle can play an important role in regenerative medicine, disease modeling, drug testing, as well as the actuation of biohybrid machines. As the applications of engineered muscle tissues expand, there exists a growing need to cryopreserve and store these tissues without impairing function. In a previous study, we developed a cryopreservation protocol in which engineered skeletal muscle tissues are frozen before myogenic differentiation. In that study, we found that this cryopreservation process led to a three-fold increase in the force generation of the differentiated muscle. Here, we perform further testing to determine the mechanisms by which cryopreservation enhances engineered skeletal muscle function. We found that cryopreservation alters the microstructure of the tissue by increasing pore size and decreasing elastic modulus of the extracellular matrix (ECM), which leads to increased expression of genes related to cell migration, cell-matrix adhesion, ECM secretion, and protease activity. Specifically, cryopreservation leads to the upregulation of many ECM proteins, including laminin, fibronectin, and several types of collagens, as well as integrins and matrix metalloproteinases. These changes to ECM structure and composition were associated with enhanced myogenic differentiation, as evidenced by the upregulation of late-stage myogenic markers and increased force generation. These results highlight the need to understand the effects of cryopreservation on the ECM of other tissues as we strive to advance tissue and organ cryopreservation protocols for regenerative medicine.


Assuntos
Matriz Extracelular , Músculo Esquelético , Matriz Extracelular/metabolismo , Criopreservação/métodos , Laminina/farmacologia , Congelamento , Engenharia Tecidual/métodos
3.
Biomaterials ; 287: 121643, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35772349

RESUMO

Engineered skeletal muscle act as therapeutics invaluable to treat injured or diseased muscle and a "living" material essential to assemble biological machinery. For normal development, skeletal myoblasts should express connexin 43, one of the gap junction proteins that promote myoblast fusion and myogenesis, during the early differentiation stage. However, myoblasts cultured in vitro often down-regulate connexin 43 before differentiation, limiting myogenesis and muscle contraction. This study demonstrates that tethering myoblasts with reduced graphene oxide (rGO) slows connexin 43 regression during early differentiation and increases myogenic mRNA synthesis. The whole RNA sequencing also confirms that the rGO on cells increases regulator genes for myogenesis, including troponin, while decreasing negative regulator genes. The resulting myotubes generated a three-fold larger contraction force than the rGO-free myotubes. Accordingly, a valveless biohybrid pump assembled with the rGO-tethered muscle increased the fluid velocity and flow rate considerably. The results of this study would provide an important foundation for developing physiologically relevant muscle and powering up biomachines that will be used for various bioscience studies and unexplored applications.

4.
Adv Healthc Mater ; 9(4): e1901137, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31944612

RESUMO

Integration of conductive electrodes with 3D tissue models can have great potential for applications in bioelectronics, drug screening, and implantable devices. As conventional electrodes cannot be easily integrated on 3D, polymeric, and biocompatible substrates, alternatives are highly desirable. Graphene offers significant advantages over conventional electrodes due to its mechanical flexibility and robustness, biocompatibility, and electrical properties. However, the transfer of chemical vapor deposition graphene onto millimeter scale 3D structures is challenging using conventional wet graphene transfer methods with a rigid poly (methyl methacrylate) (PMMA) supportive layer. Here, a biocompatible 3D graphene transfer method onto 3D printed structure using a soft poly ethylene glycol diacrylate (PEGDA) supportive layer to integrate the graphene layer with a 3D engineered ring of skeletal muscle tissue is reported. The use of softer PEGDA supportive layer, with a 105 times lower Young's modulus compared to PMMA, results in conformal integration of the graphene with 3D printed pillars and allows electrical stimulation and actuation of the muscle ring with various applied voltages and frequencies. The graphene integration method can be applied to many 3D tissue models and be used as a platform for electrical interfaces to 3D biological tissue system.


Assuntos
Grafite , Condutividade Elétrica , Eletrodos , Músculo Esquelético , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...