Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(10): 280, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684532

RESUMO

Nuclear Cyclin D1 (Ccnd1) is a main regulator of cell cycle progression and cell proliferation. Interestingly, Ccnd1 moves to the cytoplasm at the onset of differentiation in neuronal precursors. However, cytoplasmic functions and targets of Ccnd1 in post-mitotic neurons are unknown. Here we identify the α4 subunit of gamma-aminobutyric acid (GABA) type A receptors (GABAARs) as an interactor and target of Ccnd1-Cdk4. Ccnd1 binds to an intracellular loop in α4 and, together with Cdk4, phosphorylates the α4 subunit at threonine 423 and serine 431. These modifications upregulate α4 surface levels, increasing the response of α4-containing GABAARs, measured in whole-cell patch-clamp recordings. In agreement with this role of Ccnd1-Cdk4 in neuronal signalling, inhibition of Cdk4 or expression of the non-phosphorylatable α4 decreases synaptic and extra-synaptic currents in the hippocampus of newborn rats. Moreover, according to α4 functions in synaptic pruning, CCND1 knockout mice display an altered pattern of dendritic spines that is rescued by the phosphomimetic α4. Overall, our findings molecularly link Ccnd1-Cdk4 to GABAARs activity in the central nervous system and highlight a novel role for this G1 cyclin in neuronal signalling.


Assuntos
Ciclina D1 , Quinase 4 Dependente de Ciclina , Receptores de GABA-A , Animais , Camundongos , Ratos , Ciclina D1/genética , Ácido gama-Aminobutírico , Camundongos Knockout , Neurônios , Fosforilação , Receptores de GABA-A/genética , Quinase 4 Dependente de Ciclina/genética
2.
Mol Cell Proteomics ; 22(6): 100547, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059366

RESUMO

Basal cell carcinomas (BCCs) and cutaneous squamous cell carcinomas (SCCs) are the most frequent types of cancer, and both originate from the keratinocyte transformation, giving rise to the group of tumors called keratinocyte carcinomas (KCs). The invasive behavior is different in each group of KC and may be influenced by their tumor microenvironment. The principal aim of the study is to characterize the protein profile of the tumor interstitial fluid (TIF) of KC to evaluate changes in the microenvironment that could be associated with their different invasive and metastatic capabilities. We obtained TIF from 27 skin biopsies and conducted a label-free quantitative proteomic analysis comparing seven BCCs, 16 SCCs, and four normal skins. A total of 2945 proteins were identified, 511 of them quantified in more than half of the samples of each tumoral type. The proteomic analysis revealed differentially expressed TIF proteins that could explain the different metastatic behavior in both KCs. In detail, the SCC samples disclosed an enrichment of proteins related to cytoskeleton, such as Stratafin and Ladinin-1. Previous studies found their upregulation positively correlated with tumor progression. Furthermore, the TIF of SCC samples was enriched with the cytokines S100A8/S100A9. These cytokines influence the metastatic output in other tumors through the activation of NF-kB signaling. According to this, we observed a significant increase in nuclear NF-kB subunit p65 in SCCs but not in BCCs. In addition, the TIF of both tumors was enriched with proteins involved in the immune response, highlighting the relevance of this process in the composition of the tumor environment. Thus, the comparison of the TIF composition of both KCs provides the discovery of a new set of differential biomarkers. Among them, secreted cytokines such as S100A9 may help explain the higher aggressiveness of SCCs, while Cornulin is a specific biomarker for BCCs. Finally, the proteomic landscape of TIF provides key information on tumor growth and metastasis, which can contribute to the identification of clinically applicable biomarkers that may be used in the diagnosis of KC, as well as therapeutic targets.


Assuntos
Carcinoma Basocelular , Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/metabolismo , Líquido Extracelular/metabolismo , NF-kappa B/metabolismo , Proteômica , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma de Células Escamosas/metabolismo , Queratinócitos/metabolismo , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral
3.
Mol Oncol ; 17(1): 98-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409196

RESUMO

Uterine serous carcinoma (USC) is an aggressive form of endometrial cancer (EC), characterized by its high propensity for metastases. In fact, while endometrioid endometrial carcinoma (EEC), which accounts for 85% of EC, presents a good prognosis, USC is the most frequently fatal. Herein, we used for the first time a peptide-based tyrosine-kinase-activity profiling approach to quantify the changes in tyrosine kinase activation between USC and EEC. Among the tyrosine kinases highly activated in USC, we identified focal adhesion kinase (FAK). We conducted mechanistic studies using cellular models. In a USC cell line, targeting FAK either by inhibitors PF-573228 and defactinib (VS-6063) or by gene silencing limits 3D cell growth and reduces cell migration. Moreover, results from our studies suggest that oxidative stress is increased in USC tumors compared to EEC ones. Reactive oxygen species (ROS) induce tyrosine phosphorylation of FAK and a concomitant tyrosine phosphorylation of paxillin, a mediator of FAK signal transduction. Mechanistically, by tracking hundreds of individual cells per condition, we show that ROS increased cell distance and migration velocity, highlighting the role of ROS-FAK-PAX signaling in cell migration. Both defactinib and ROS scavenger N-acetylcysteine (NAC) revert this effect, pointing toward ROS as potential culprits for the increase in USC cell motility. A proof of concept of the role of FAK in controlling cell growth was obtained in in vivo experiments using cancer-tissue-originated spheroids (CTOS) and a patient-derived orthotopic xenograft model (orthoxenograft/PDOX). Defactinib reduces cell proliferation and protein oxidation, supporting a pro-tumoral antioxidant role of FAK, whereas antioxidant NAC reverts FAK inhibitor effects. Overall, our data points to ROS-mediated FAK activation in USC as being responsible for the poor prognosis of this tumor type and emphasize the potential of FAK inhibition for USC treatment.


Assuntos
Antioxidantes , Cistadenocarcinoma Seroso , Quinase 1 de Adesão Focal , Humanos , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Quinase 1 de Adesão Focal/metabolismo , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio , Tirosina/metabolismo , Animais
4.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35897776

RESUMO

Glioblastoma (GBM) is the most common tumor in the central nervous system in adults. This neoplasia shows a high capacity of growth and spreading to the surrounding brain tissue, hindering its complete surgical resection. Therefore, the finding of new antitumor therapies for GBM treatment is a priority. We have previously described that cyclin D1-CDK4 promotes GBM dissemination through the activation of the small GTPases RalA and RalB. In this paper, we show that RalB GTPase is upregulated in primary GBM cells. We found that the downregulation of Ral GTPases, mainly RalB, prevents the proliferation of primary GBM cells and triggers a senescence-like response. Moreover, downregulation of RalA and RalB reduces the viability of GBM cells growing as tumorspheres, suggesting a possible role of these GTPases in the survival of GBM stem cells. By using mouse subcutaneous xenografts, we have corroborated the role of RalB in GBM growth in vivo. Finally, we have observed that the knockdown of RalB also inhibits cell growth in temozolomide-resistant GBM cells. Overall, our work shows that GBM cells are especially sensitive to Ral-GTPase availability. Therefore, we propose that the inactivation of Ral-GTPases may be a reliable therapeutic approach to prevent GBM progression and recurrence.


Assuntos
Glioblastoma , Animais , Proliferação de Células , Regulação para Baixo , GTP Fosfo-Hidrolases , Glioblastoma/genética , Humanos , Camundongos
5.
Geroscience ; 42(4): 1157-1173, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578071

RESUMO

Species longevity varies significantly across animal species, but the underlying molecular mechanisms remain poorly understood. Recent studies and omics approaches suggest that phenotypic traits of longevity could converge in the mammalian target of rapamycin (mTOR) signalling pathway. The present study focuses on the comparative approach in heart tissue from 8 mammalian species with a ML ranging from 3.5 to 46 years. Gene expression, protein content, and concentration of regulatory metabolites of the mTOR complex 1 (mTORC1) were measured using droplet digital PCR, western blot, and mass spectrometry, respectively. Our results demonstrate (1) the existence of differences in species-specific gene expression and protein content of mTORC1, (2) that the achievement of a high longevity phenotype correlates with decreased and inhibited mTORC1, (3) a decreased content of mTORC1 activators in long-lived animals, and (4) that these differences are independent of phylogeny. Our findings, taken together, support an important role for mTORC1 downregulation in the evolution of long-lived mammals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Longevidade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Expressão Gênica , Longevidade/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosforilação , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Nat Commun ; 11(1): 1943, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327648

RESUMO

Kidney fibrosis is a highly deleterious process and a final manifestation of chronic kidney disease. Alpha-(α)-synuclein (SNCA) is an actin-binding neuronal protein with various functions within the brain; however, its role in other tissues is unknown. Here, we describe the expression of SNCA in renal epithelial cells and demonstrate its decrease in renal tubules of murine and human fibrotic kidneys, as well as its downregulation in renal proximal tubular epithelial cells (RPTECs) after TGF-ß1 treatment. shRNA-mediated knockdown of SNCA in RPTECs results in de novo expression of vimentin and α-SMA, while SNCA overexpression represses TGF-ß1-induced mesenchymal markers. Conditional gene silencing of SNCA in RPTECs leads to an exacerbated tubulointerstitial fibrosis (TIF) in two unrelated in vivo fibrotic models, which is associated with an increased activation of MAPK-p38 and PI3K-Akt pathways. Our study provides an evidence that disruption of SNCA signaling in RPTECs contributes to the pathogenesis of renal TIF by facilitating partial epithelial-to-mesenchymal transition and extracellular matrix accumulation.


Assuntos
Nefropatias/patologia , Rim/patologia , alfa-Sinucleína/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Rim/metabolismo , Nefropatias/genética , Nefropatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Obstrução Ureteral/genética , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Vimentina/genética , Vimentina/metabolismo , alfa-Sinucleína/genética , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Cell Death Dis ; 11(2): 82, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015347

RESUMO

The long isoform of Fas apoptosis inhibitory molecule (FAIM-L) is a neuron-specific death receptor antagonist that modulates apoptotic cell death and mechanisms of neuronal plasticity. FAIM-L exerts its antiapoptotic action by binding to X-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases, which are the main effectors of apoptosis. XIAP levels are regulated by the ubiquitin-proteasome pathway. FAIM-L interaction with XIAP prevents the ubiquitination and degradation of the latter, thereby allowing it to inhibit caspase activation. This interaction also modulates non-apoptotic functions of caspases, such as the endocytosis of AMPA receptor (AMPAR) in hippocampal long-term depression (LTD). The molecular mechanism of action exerted by FAIM-L is unclear since the consensus binding motifs are still unknown. Here, we performed a two-hybrid screening to discover novel FAIM-L-interacting proteins. We found a functional interaction of SIVA-1 with FAIM-L. SIVA-1 is a proapoptotic protein that has the capacity to interact with XIAP. We describe how SIVA-1 regulates FAIM-L function by disrupting the interaction of FAIM-L with XIAP, thereby promoting XIAP ubiquitination, caspase-3 activation and neuronal death. Furthermore, we report that SIVA-1 plays a role in receptor internalization in synapses. SIVA-1 is upregulated upon chemical LTD induction, and it modulates AMPAR internalization via non-apoptotic activation of caspases. In summary, our findings uncover SIVA-1 as new functional partner of FAIM-L and demonstrate its role as a regulator of caspase activity in synaptic function.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Plasticidade Neuronal , Animais , Proteínas Reguladoras de Apoptose/genética , Caspase 3/metabolismo , Células Cultivadas , Células HEK293 , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ligação Proteica , Ratos , Receptores de AMPA/metabolismo , Ubiquitinação
8.
Australas J Dermatol ; 61(2): e200-e207, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31944277

RESUMO

BACKGROUND/OBJECTIVE: Ingenol mebutate gel is approved for actinic keratosis field therapy, but little has been published as a treatment of basal cell carcinoma (BCC). Our objective is to characterise the histopathological changes and the infiltrating cell populations to better understand its mechanism of action. METHODS: Sixteen patients with various BCC subtypes were prospectively evaluated and treated once daily for two consecutive days with ingenol mebutate gel 0.05% under occlusion. Patients were randomised to two arms: the first arm was biopsied between the third and the tenth day after treatment initiation ('early immune response'), and the second arm was biopsied at day 30 after treatment initiation ('late immune response'). The immunopathology was evaluated by immunohistochemistry: anti-CD3, anti-CD4, anti-CD8, anti-CD20, anti-CD56, anti-CD68, anti-Bcl-2, anti-CASP3, anti-FoxP3, anti-GrzB and anti-TIA-1. RESULTS: Ten BCCs were in complete remission after 2 years of follow-up. The early immune response was characterised by a quick recruitment of T lymphocytes, macrophages and natural killer cells. At later time-points, T-regulatory cells and some pro-apoptotic markers were detected. Treatment-related adverse events were described. CONCLUSION: Ingenol mebutate gel produces a transient immuno-inflammatory response and an important necrosis reaction in BCCs. Larger studies will be required to determine the maximum effective tolerated dose of ingenol mebutate gel for BCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Diterpenos/uso terapêutico , Inflamação/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Administração Cutânea , Idoso , Carcinoma Basocelular/complicações , Feminino , Humanos , Inflamação/etiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias Cutâneas/complicações , Resultado do Tratamento
9.
J Proteome Res ; 19(7): 2598-2605, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31877049

RESUMO

The analysis of tumor interstitial fluid (TIF) composition is a valuable procedure to identify antimetastatic targets, and different laboratories have set up techniques for TIF isolation and proteomic analyses. However, those methods had never been compared in samples from the same tumor and patient. In this work, we compared the two most used methods, elution and centrifugation, in pieces of the same biopsy samples of cutaneous squamous cell carcinoma (cSCC). First, we established that high G-force (10 000g) was required to obtain TIF from cSCC by centrifugation. Second, we compared the centrifugation method with the elution method in pieces of three different cSCC tumors. We found that the mean protein intensities based in the number of peptide spectrum matches was significantly higher in the centrifuged samples than in the eluted samples. Regarding the robustness of the methods, we observed higher overlapping between both methods (77-80%) than among samples (50%). These results suggest that there exists an elevated consistence of TIF composition independently of the method used. However, we observed a 3-fold increase of extracellular proteins in nonoverlapped proteome obtained by centrifugation. We therefore conclude that centrifugation is the method of choice to study the proteome of TIF from cutaneous biopsies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Biópsia , Carcinoma de Células Escamosas/diagnóstico , Centrifugação , Líquido Extracelular , Humanos , Proteoma , Proteômica
10.
J Pathol ; 248(4): 501-513, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30957234

RESUMO

Glioblastoma (GBM) is a highly invasive brain neoplasia with an elevated recurrence rate after surgical resection. The cyclin D1 (Ccnd1)/Cdk4-retinoblastoma 1 (RB1) axis is frequently altered in GBM, leading to overproliferation by RB1 deletion or by Ccnd1-Cdk4 overactivation. High levels of Ccnd1-Cdk4 also promote GBM cell invasion by mechanisms that are not so well understood. The purpose of this work is to elucidate the in vivo role of cytoplasmic Ccnd1-Cdk4 activity in the dissemination of GBM. We show that Ccnd1 activates the invasion of primary human GBM cells through cytoplasmic RB1-independent mechanisms. By using GBM mouse models, we observed that evaded GBM cells showed cytoplasmic Ccnd1 colocalizing with regulators of cell invasion such as RalA and paxillin. Our genetic data strongly suggest that, in GBM cells, the Ccnd1-Cdk4 complex is acting upstream of those regulators. Accordingly, expression of Ccnd1 induces focal adhesion kinase, RalA and Rac1 activities. Finally, in vivo experiments demonstrated increased GBM dissemination after expression of membrane-targeted Ccnd1. We conclude that Ccnd1-Cdk4 activity promotes GBM dissemination through cytoplasmic and RB1-independent mechanisms. Therefore, inhibition of Ccnd1-Cdk4 activity may be useful to hinder the dissemination of recurrent GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Ciclina D1/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Ciclina D1/metabolismo , Citoplasma/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Invasividade Neoplásica
11.
Small GTPases ; 10(1): 47-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129038

RESUMO

Together with a cyclin-dependent kinase (CDK) partner G1 cyclins control cell cycle entry by phosphorylating a number of nuclear targets and releasing a transcriptional program at the end of G1 phase. Yeast G1 cyclins also operate on cytoplasmic targets involved in the polarization of the cytoskeleton and vesicle trafficking. These processes are mainly controlled by the small GTPase Cdc42, and G1 cyclins regulate the activity of this and other small GTPases through the modulation of their regulators and effectors. This regulation is key for different developmental outcomes in unicellular organisms. In mammalian cells cytoplasmic G1 cyclin D1 has been shown to promote the activity of Rac1 and Ral GTPases and to block RhoA. Regulation of these small GTPases by G1 cyclins may constitute a mechanism to coordinate proliferation with cell migration and morphogenesis, important processes not only during normal development and organogenesis but also for tumor formation and metastasis. Here we briefly review the evidence supporting a role of G1 cyclins and CDKs as regulators of the activity of small GTPases, emphasizing their functional relevance both in budding yeast and in mammalian cells.


Assuntos
Ciclina G1/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Animais , Humanos , Saccharomyces cerevisiae/enzimologia
12.
Am J Dermatopathol ; 40(5): 342-348, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29135512

RESUMO

Basal cell carcinoma (BCC) seems to originate from ultraviolet light-induced mutations involving the bulge or the outer sheath of the hair follicle cells. However, the etiopathogenic mechanisms involved in the development of these tumors in nonphotoexposed and in hairless areas remain unclear. The cytokeratin (CK) profile (including CK5/6, CK7, CK14, CK15, CK17, and CK19) from a series of different BCC subtypes developing in sun-exposed and non-sun-exposed areas, including hairless regions, was evaluated. The authors have observed that CK7 expression in BCC is associated with the anatomical localization of the tumor and its sun-exposition, but not with other factors such as histological subtype. The expression of this CK is higher in BCCs located in non-sun-exposed and nonhairy areas, such as the vulvar semimucosa and the nipple. Because CK7 is a marker of simple glandular epithelia, the authors suggest a glandular origin for BCCs located in hairless and nonphotoexposed areas.


Assuntos
Carcinoma Basocelular/patologia , Queratinas/biossíntese , Neoplasias Cutâneas/patologia , Adulto , Carcinoma Basocelular/etiologia , Feminino , Folículo Piloso/patologia , Humanos , Masculino , Neoplasias de Anexos e de Apêndices Cutâneos/etiologia , Neoplasias de Anexos e de Apêndices Cutâneos/patologia , Neoplasias Cutâneas/etiologia , Luz Solar/efeitos adversos
13.
DNA Repair (Amst) ; 57: 171-178, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28822913

RESUMO

Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention.


Assuntos
Sobrevivência Celular , Dano ao DNA , Reparo do DNA , DNA/metabolismo , Polifosfatos/metabolismo , Desoxirribonucleotídeos/metabolismo , Células HEK293 , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
14.
J Cutan Med Surg ; 21(5): 457-459, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28565920

RESUMO

Basal cell carcinomas (BCC) are the most frequent tumours in humans and normally appear in photoexposed areas of the skin. It is widely accepted that BCCs originate at follicular stem cells and consequently are very rare in nonhairy areas. Here, we report 4 cases of vulvar BCC, 3 of which were located in a vulvar semimucous area, a nonphotoexposed area, and a nonhairy area. We have determined the CK7 and CK19 profile of all cases; both are markers of simple epithelium with glandular differentiation. Interestingly, all cases were positively stained for CK7 and CK19. Considering that the vulvar region is rich in sebaceous and apocrine units, we hypothesise a glandular origin of BCCs situated in the vulvar region.


Assuntos
Carcinoma Basocelular/metabolismo , Queratina-19/metabolismo , Queratina-7/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Vulvares/metabolismo , Idoso , Idoso de 80 Anos ou mais , Carcinoma Basocelular/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Cutâneas/patologia , Neoplasias Vulvares/patologia
15.
J Pathol ; 242(2): 152-164, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28349562

RESUMO

PTEN is one of the most frequently mutated genes in human cancers. The frequency of PTEN alterations is particularly high in endometrial carcinomas. Loss of PTEN leads to dysregulation of cell division, and promotes the accumulation of cell cycle complexes such as cyclin D1-CDK4/6, which is an important feature of the tumour phenotype. Cell cycle proteins have been presented as key targets in the treatment of the pathogenesis of cancer, and several CDK inhibitors have been developed as a strategy to generate new anticancer drugs. Palbociclib (PD-332991) specifically inhibits CDK4/6, and it has been approved for use in metastatic breast cancer in combination with letrazole. Here, we used a tamoxifen-inducible Pten knockout mouse model to assess the antitumour effects of cyclin D1 knockout and CDK4/6 inhibition by palbociclib on endometrial tumours. Interestingly, both cyclin D1 deficiency and palbociclib treatment triggered shrinkage of endometrial neoplasias. In addition, palbociclib treatment significantly increased the survival of Pten-deficient mice, and, as expected, had a general effect in reducing tumour cell proliferation. To further analyse the effects of palbociclib on endometrial carcinoma, we established subcutaneous tumours with human endometrial cancer cell lines and primary endometrial cancer xenografts, which allowed us to provide more translational and predictive data. To date, this is the first preclinical study evaluating the response to CDK4/6 inhibition in endometrial malignancies driven by PTEN deficiency, and it reveals an important role of cyclin D-CDK4/6 activity in their development. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Ciclina D1/genética , Neoplasias do Endométrio/tratamento farmacológico , PTEN Fosfo-Hidrolase/genética , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Carcinogênese , Ciclina D1/antagonistas & inibidores , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/genética , Modelos Animais de Doenças , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Humanos , Camundongos , Camundongos Knockout , Tamoxifeno/efeitos adversos , Transplante Heterólogo
16.
Mol Cell Oncol ; 3(5): e1203471, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27857971

RESUMO

Amplification of cyclin D1 is a frequent alteration in many cancers of different type and origin. We recently described a novel regulatory axis involving cyclin D1 in the regulation of tumor invasion and metastasis. Membrane-associated cyclin D1-CDK4 complexes promote activation of the small GTPase RAC1 through phosphorylation of the regulatory protein paxillin.

17.
J Hepatol ; 65(4): 748-757, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27245430

RESUMO

BACKGROUND & AIMS: The pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD) is still incompletely understood. Several nuclear receptors play a role in liver lipid metabolism and can promote hepatosteatosis, but the possible role of vitamin D receptor (VDR) in NAFLD has not been investigated. METHODS: The expression of liver VDR was investigated in apolipoprotein E knockout (apoE(-/-)) mice on a high fat diet, in wild-type mice on methionine and choline deficient diet and in NAFLD patients with hepatosteatosis and non-alcoholic steatohepatitis. The relevance of VDR was assessed in apoE(-/-) mice by deletion of VDR or paricalcitol treatment and in human HepG2 cells by VDR transfection or silencing. The role of VDR in fibrosis was also determined in VDR knockout mice (VDR(-/-)) treated with thioacetamide. RESULTS: Expression of liver VDR was markedly induced in two mouse models of NAFLD, as well as in patients with hepatosteatosis, but decreased in non-alcoholic steatohepatitis. VDR deletion in high fat diet-fed apoE(-/-) mice protected against fatty liver, dyslipidemia and insulin resistance, and caused a decrease in taurine-conjugated bile acids, but did not influence fibrosis by thioacetamide. apoE(-/-)VDR(-/-) mouse livers showed decreased gene expression of CD36, DGAT2, C/EBPα and FGF21, and increased expression of PNPLA2, LIPIN1 and PGC1α. Treatment of apoE(-/-) mice on high fat diet with paricalcitol had modest opposite effects on steatosis and gene expression. Finally, this set of genes showed concordant responses when VDR was overexpressed or silenced in HepG2 cells. CONCLUSIONS: Induced hepatocyte VDR in NAFLD regulates key hepatic lipid metabolism genes and promotes high fat diet-associated liver steatosis. Therapeutic inhibition of liver VDR may reverse steatosis in early NAFLD. LAY SUMMARY: The amount of vitamin D receptor is induced early in the livers of mice and humans when they develop non-alcoholic fatty liver disease. If the gene for the vitamin D receptor is deleted, hepatic lipid metabolism changes and mice do not accumulate fat in the liver. We conclude that the vitamin D receptor can contribute to the fatty liver disease promoted by a high fat diet.


Assuntos
Metabolismo dos Lipídeos , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Hepatócitos , Humanos , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Receptores de Calcitriol
18.
Nat Commun ; 7: 11581, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27181366

RESUMO

Cyclin D1 (Ccnd1) together with its binding partner Cdk4 act as a transcriptional regulator to control cell proliferation and migration, and abnormal Ccnd1·Cdk4 expression promotes tumour growth and metastasis. While different nuclear Ccnd1·Cdk4 targets participating in cell proliferation and tissue development have been identified, little is known about how Ccnd1·Cdk4 controls cell adherence and invasion. Here, we show that the focal adhesion component paxillin is a cytoplasmic substrate of Ccnd1·Cdk4. This complex phosphorylates a fraction of paxillin specifically associated to the cell membrane, and promotes Rac1 activation, thereby triggering membrane ruffling and cell invasion in both normal fibroblasts and tumour cells. Our results demonstrate that localization of Ccnd1·Cdk4 to the cytoplasm does not simply act to restrain cell proliferation, but constitutes a functionally relevant mechanism operating under normal and pathological conditions to control cell adhesion, migration and metastasis through activation of a Ccnd1·Cdk4-paxillin-Rac1 axis.


Assuntos
Ciclina D1/metabolismo , Citoplasma/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Paxilina/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ciclina D1/deficiência , Quinase 4 Dependente de Ciclina/metabolismo , Regulação para Baixo/genética , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Ratos , Especificidade por Substrato , Proteínas rac1 de Ligação ao GTP/metabolismo
19.
Oncotarget ; 7(19): 26979-91, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27105504

RESUMO

Cyclin D1 (Ccnd1) is a proto-oncogen amplified in many different cancers and nuclear accumulation of Ccnd1 is a characteristic of tumor cells. Ccnd1 activates the transcription of a large set of genes involved in cell cycle progress and proliferation. However, Ccnd1 also targets cytoplasmic proteins involved in the regulation of cell migration and invasion. In this work, we have analyzed by immunohistochemistry the localization of Ccnd1 in endometrial, breast, prostate and colon carcinomas with different types of invasion. The number of cells displaying membranous or cytoplasmic Ccnd1 was significantly higher in peripheral cells than in inner cells in both collective and pushing invasion patterns of endometrial carcinoma, and in collective invasion pattern of colon carcinoma. Also, the cytoplasmic localization of Ccnd1 was higher when tumors infiltrated as single cells, budding or small clusters of cells. To evaluate cytoplasmic function of cyclin D1, we have built a variant (Ccnd1-CAAX) that remains attached to the cell membrane therefore sequestering this cyclin in the cytoplasm. Tumor cells harboring Ccnd1-CAAX showed high levels of invasiveness and metastatic potential compared to those containing the wild type allele of Ccnd1. However, Ccnd1-CAAX expression did not alter proliferative rates of tumor cells. We hypothesize that the role of Ccnd1 in the cytoplasm is mainly associated with the invasive capability of tumor cells. Moreover, we propose that subcellular localization of Ccnd1 is an interesting guideline to measure cancer outcome.


Assuntos
Biomarcadores Tumorais/metabolismo , Ciclina D1/metabolismo , Citoplasma/metabolismo , Neoplasias/metabolismo , Motivos de Aminoácidos/genética , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células Cultivadas , Neoplasias do Colo/metabolismo , Ciclina D1/genética , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Camundongos Nus , Camundongos SCID , Microscopia Confocal , Invasividade Neoplásica , Neoplasias da Próstata/metabolismo
20.
Dermatol Surg ; 41(6): 677-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25973561

RESUMO

BACKGROUND: Constitutive activation of the Erk pathway can lead to oncogenic transformation. However, the Erk pathway is not activated in human basal cell carcinomas (BCCs); although in animal models, this seems to be important. OBJECTIVE: To help understand the role of Erk activity in BCC formation. MATERIALS AND METHODS: The authors assayed the specific levels of phosphorylated Erk by immunohistochemistry in BCCs and normal skin biopsies. They have also analyzed Erk activation by immunoblot in fibroblasts isolated from BCC. RESULTS: By immunohistochemical analysis, the authors have observed that 10 of BCCs (56%) did not show phosphor-Erk staining in tumor masses and 7 (40%) showed a gradient staining exhibiting phospho-Erk only in the epidermal side of tumor masses. Remarkably, 15 BCC samples (83%) showed phospho-Erk accumulation in stroma. Six of the 9 independent cultures of dermal fibroblasts isolated from BCC maintained Erk activation "in vitro." CONCLUSION: The authors propose that there is a specific cell-type regulation of Erk activity in BCC, and this feature may be relevant during BCC formation. Stroma region from BCCs showed Erk activation and reduced proliferation. Conversely, Erk activation is barely detectable in proliferative BCCs.


Assuntos
Carcinoma Basocelular/enzimologia , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Cutâneas/enzimologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Antígeno Ki-67/análise , Masculino , Proteína Quinase 1 Ativada por Mitógeno/análise , Proteína Quinase 3 Ativada por Mitógeno/análise , Fosforilação , Pele/enzimologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...