Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 231(4): 1338-1352, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33997999

RESUMO

Plants are a rich source of specialized metabolites with a broad range of bioactivities and many applications in human daily life. Over the past decades significant progress has been made in identifying many such metabolites in different plant species and in elucidating their biosynthetic pathways. However, the biological roles of plant specialized metabolites remain elusive and proposed functions lack an identified underlying molecular mechanism. Understanding the roles of specialized metabolites frequently is hampered by their dynamic production and their specific spatiotemporal accumulation within plant tissues and organs throughout a plant's life cycle. In this review, we propose the employment of strategies from the field of Synthetic Biology to construct and optimize genetically encoded biosensors that can detect individual specialized metabolites in a standardized and high-throughput manner. This will help determine the precise localization of specialized metabolites at the tissue and single-cell levels. Such information will be useful in developing complete system-level models of specialized plant metabolism, which ultimately will demonstrate how the biosynthesis of specialized metabolites is integrated with the core processes of plant growth and development.


Assuntos
Técnicas Biossensoriais , Biologia Sintética , Vias Biossintéticas , Plantas
2.
Phytochemistry ; 186: 112707, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721796

RESUMO

The glycogen synthase kinases 3 family (GSK3s/SKs; serine/threonine protein kinases) is conserved throughout eukaryotic evolution from yeast to plants and mammals. We studied a plant SK kinase from Lotus japonicus (LjSK1), previously implicated in nodule development, by enzyme kinetics and mutagenesis studies to compare it to mammalian homologues. Using a phosphorylated peptide as substrate, LjSK1 displays optimum kinase activity at pH 8.0 and 20 °C following Michaelis-Menten kinetics with Km and Vmax values of 48.2 µM and 111.6 nmol/min/mg, respectively, for ATP. Mutation of critical residues, as inferred by sequence comparison to the human homologue GSK3ß and molecular modeling, showed a conserved role for Lys167, while residues conferring substrate specificity in the human enzyme are not as significant in modulating LjSK1 substrate specificity. Mutagenesis studies also indicate a regulation mechanism for LjSK1 via proteolysis since removal of a 98 residue long N-terminal segment increases its catalytic efficiency by almost two-fold. In addition, we evaluated the alteration of LjSK1 kinase activity in planta, by overexpressing the mutant variants in hairy-roots and a phenotype in nodulation and lateral root development was verified.


Assuntos
Lotus , Glicogênio Sintase Quinase 3 beta , Lotus/genética , Mutagênese , Fosforilação , Proteínas de Plantas/metabolismo
3.
MethodsX ; 7: 101098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102159

RESUMO

•This work describes a protocol for hairy root transformation of the medicinal crop legume fenugreek (Trigonella foenum-graecum L.). Hairy root plant transformation mediated by Agrobacterium rhizogenes is an established method for the rapid genetic transformation of various dicotyledonous plants. We have adapted a hairy root transformation protocol from the model legume Medicago truncatula for use in this metabolically rich non-model crop legume. Considering the great variety and abundance of phytochemicals in fenugreek and its established use in traditional medicine, we aim for this method to become a resource for metabolic pathway identification and for production of valuable specialised metabolites via metabolic engineering approaches.•Development rapid transformation (2.5-3 weeks) of fenugreek roots via A. rhizogenes.•Marker gene cassette with suitable promoter for visual detection of transformed fenugreek roots.

4.
Plant Physiol Biochem ; 154: 451-462, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32659648

RESUMO

The development of genetic transformation methods is critical for enabling the thorough characterization of an organism and is a key step in exploiting any species as a platform for synthetic biology and metabolic engineering approaches. In this work we describe the development of an Agrobacterium rhizogenes-mediated hairy root transformation protocol for the crop and medicinal legume fenugreek (Trigonella foenum-graecum). Fenugreek has a rich and diverse content in bioactive specialised metabolites, notably diosgenin, which is a common precursor for synthetic human hormone production. This makes fenugreek a prime target for identification and engineering of specific biosynthetic pathways for the production of triterpene and steroidal saponins, phenolics, and galactomanans. Through this transformation protocol, we identified a suitable promoter for robust transgene expression in fenugreek. Finally, we establish the proof of principle for the utility of the fenugreek system for metabolic engineering programs, by heterologous expression of known triterpene saponin biosynthesis regulators from the related legume Medicago truncatula in fenugreek hairy roots.


Assuntos
Engenharia Metabólica , Redes e Vias Metabólicas , Trigonella , Agrobacterium , Diosgenina , Humanos , Raízes de Plantas , Saponinas , Transformação Genética , Trigonella/genética , Trigonella/metabolismo
5.
Nat Chem Biol ; 16(7): 740-748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424305

RESUMO

Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.


Assuntos
Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glicosiltransferases/genética , Proteínas de Plantas/genética , Saponinas/biossíntese , Spinacia oleracea/metabolismo , Terpenos/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Retículo Endoplasmático/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Glucosiltransferases/metabolismo , Ácido Glucurônico/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Spinacia oleracea/genética
6.
Plant J ; 98(2): 228-242, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570783

RESUMO

Glycogen synthase kinase/SHAGGY-like kinases (SKs) are a highly conserved family of signaling proteins that participate in many developmental, cell-differentiation, and metabolic signaling pathways in plants and animals. Here, we investigate the involvement of SKs in legume nodulation, a process requiring the integration of multiple signaling pathways. We describe a group of SKs in the model legume Lotus japonicus (LSKs), two of which respond to inoculation with the symbiotic nitrogen-fixing bacterium Mesorhizobium loti. RNAi knock-down plants and an insertion mutant for one of these genes, LSK1, display increased nodulation. Ηairy-root lines overexpressing LSK1 form only marginally fewer mature nodules compared with controls. The expression levels of genes involved in the autoregulation of nodulation (AON) mechanism are affected in LSK1 knock-down plants at low nitrate levels, both at early and late stages of nodulation. At higher levels of nitrate, these same plants show the opposite expression pattern of AON-related genes and lose the hypernodulation phenotype. Our findings reveal an additional role for the versatile SK gene family in integrating the signaling pathways governing legume nodulation, and pave the way for further study of their functions in legumes.


Assuntos
Lotus/genética , Lotus/metabolismo , Nodulação/genética , Nodulação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Mesorhizobium/fisiologia , Nitratos/metabolismo , Bactérias Fixadoras de Nitrogênio , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/classificação , Interferência de RNA , Rhizobium/metabolismo , Nódulos Radiculares de Plantas , Simbiose
7.
Int J Mol Sci ; 20(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591629

RESUMO

Glucocorticoids are steroid hormones that regulate inflammation, growth, metabolism, and apoptosis via their cognate receptor, the glucocorticoid receptor (GR). GR, acting mainly as a transcription factor, activates or represses the expression of a large number of target genes, among them, many genes of anti-inflammatory and pro-inflammatory molecules, respectively. Transrepression activity of glucocorticoids also accounts for their anti-inflammatory activity, rendering them the most widely prescribed drug in medicine. However, chronic and high-dose use of glucocorticoids is accompanied with many undesirable side effects, attributed predominantly to GR transactivation activity. Thus, there is a high need for selective GR agonist, capable of dissociating transrepression from transactivation activity. Protopanaxadiol and protopanaxatriol are triterpenoids that share structural and functional similarities with glucocorticoids. The molecular mechanism of their actions is unclear. In this study applying induced-fit docking analysis, luciferase assay, immunofluorescence, and Western blot analysis, we showed that protopanaxadiol and more effectively protopanaxatriol are capable of binding to GR to activate its nuclear translocation, and to suppress the nuclear factor-kappa beta activity in GR-positive HeLa and HEK293 cells, but not in GR-low level COS-7 cells. Interestingly, no transactivation activity was observed, whereas suppression of the dexamethasone-induced transactivation of GR and induction of apoptosis in HeLa and HepG2 cells were observed. Thus, our results indicate that protopanaxadiol and protopanaxatriol could be considered as potent and selective GR agonist.


Assuntos
Receptores de Glucocorticoides/metabolismo , Sapogeninas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Células COS , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Glucocorticoides/química , Sapogeninas/química , Sapogeninas/farmacologia , Ativação Transcricional/efeitos dos fármacos
8.
J Exp Bot ; 68(5): 885-898, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338736

RESUMO

Evidence is accumulating for molecular microcompartments formed when proteins interact in localized domains with the cytoskeleton, organelle surfaces, and intracellular membranes. To understand the potential functional significance of protein microcompartmentation in plants, we studied the interaction of the glycolytic enzyme fructose bisphosphate aldolase with actin in Arabidopsis thaliana. Homology modelling of a major cytosolic isozyme of aldolase, FBA8, suggested that the tetrameric holoenzyme has two actin binding sites and could therefore act as an actin-bundling protein, as was reported for animal aldolases. This was confirmed by in vitro measurements of an increase in viscosity of F-actin polymerized in the presence of recombinant FBA8. Simultaneously, interaction with F-actin caused non-competitive inhibition of aldolase activity. We did not detect co-localization of an FBA8-RFP fusion protein, expressed in an fba8-knockout background, with the actin cytoskeleton using confocal laser-scanning microscopy. However, we did find evidence for a low level of interaction using FRET-FLIM analysis of FBA8-RFP co-expressed with the actin-binding protein GFP-Lifeact. Furthermore, knockout of FBA8 caused minor alterations of guard cell actin cytoskeleton morphology and resulted in a reduced rate of stomatal closure in response to decreased humidity. We conclude that cytosolic aldolase can be microcompartmented in vivo by interaction with the actin cytoskeleton and may subtly modulate guard cell behaviour as a result.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Arabidopsis/genética , Frutose-Bifosfato Aldolase/genética , Proteínas de Plantas/genética , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Citosol/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Proteínas de Plantas/metabolismo
9.
Plant Physiol Biochem ; 109: 452-466, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27816826

RESUMO

Glucosinolates (GSLs) are a highly important group of secondary metabolites in the Caparalles order, both due to their significance in plant-biome interactions and to their chemoprotective properties. This study identified genes involved in all steps of aliphatic and indolic GSL biosynthesis in Eruca sativa, a cultivated plant closely related to Arabidopsis thaliana with agronomic and nutritional value. The impact of nitrogen (N) and sulfur (S) availability on GSL biosynthetic pathways at a transcriptional level, and on the final GSL content of plant leaf and root tissues, was investigated. N and S supply had a significant and interactive effect on the GSL content of leaves, in a structure-specific and tissue-dependent manner; the metabolites levels were significantly correlated with the relative expression of the genes involved in their biosynthesis. A more complex effect was observed in roots, where aliphatic and indolic GSLs and related biosynthetic genes responded differently to the various nutritional treatments suggesting that nitrogen and sulfur availability are important factors that control plant GSL content at a transcriptional level. The biological activity of extracts derived from these plants grown under the specific nutritional schemes was examined. N and S availability were found to significantly affect the cytotoxicity of E. sativa extracts on human cancer cells, supporting the notion that carefully designed nutritional schemes can promote the accumulation of chemoprotective substances in edible plants.


Assuntos
Brassicaceae/metabolismo , Glucosinolatos/biossíntese , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Brassicaceae/genética , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glucosinolatos/genética , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Nitrogênio/metabolismo , Filogenia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Comestíveis/metabolismo , Estresse Fisiológico , Enxofre/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
New Phytol ; 200(3): 675-690, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23909862

RESUMO

Genes for triterpene biosynthetic pathways exist as metabolic gene clusters in oat and Arabidopsis thaliana plants. We characterized the presence of an analogous gene cluster in the model legume Lotus japonicus. In the genomic regions flanking the oxidosqualene cyclase AMY2 gene, genes for two different classes of cytochrome P450 and a gene predicted to encode a reductase were identified. Functional characterization of the cluster genes was pursued by heterologous expression in Nicotiana benthamiana. The gene expression pattern was studied under different developmental and environmental conditions. The physiological role of the gene cluster in nodulation and plant development was studied in knockdown experiments. A novel triterpene structure, dihydrolupeol, was produced by AMY2. A new plant cytochrome P450, CYP71D353, which catalyses the formation of 20-hydroxybetulinic acid in a sequential three-step oxidation of 20-hydroxylupeol was characterized. The genes within the cluster are highly co-expressed during root and nodule development, in hormone-treated plants and under various environmental stresses. A transcriptional gene silencing mechanism that appears to be involved in the regulation of the cluster genes was also revealed. A tightly co-regulated cluster of functionally related genes is involved in legume triterpene biosynthesis, with a possible role in plant development.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Lotus/genética , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Triterpenos/metabolismo , Expressão Gênica , Inativação Gênica , Lotus/enzimologia , Lotus/metabolismo , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...