Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731936

RESUMO

Multiple myeloma is a malignancy characterized by the accumulation of malignant plasma cells in bone marrow and the production of monoclonal immunoglobulin. A hallmark of cancer is the evasion of immune surveillance. Histone deacetylase inhibitors have been shown to promote the expression of silenced molecules and hold potential to increase the anti-MM efficacy of immunotherapy. The aim of the present work was to assess the potential effect of tinostamustine (EDO-S101), a first-in-class alkylating deacetylase inhibitor, in combination with daratumumab, an anti-CD38 monoclonal antibody (mAb), through different preclinical studies. Tinostamustine increases CD38 expression in myeloma cell lines, an effect that occurs in parallel with an increment in CD38 histone H3 acetylation levels. Also, the expression of MICA and MICB, ligands for the NK cell activating receptor NKG2D, augments after tinostamustine treatment in myeloma cell lines and primary myeloma cells. Pretreatment of myeloma cell lines with tinostamustine increased the sensitivity of these cells to daratumumab through its different cytotoxic mechanisms, and the combination of these two drugs showed a higher anti-myeloma effect than individual treatments in ex vivo cultures of myeloma patients' samples. In vivo data confirmed that tinostamustine pretreatment followed by daratumumab administration significantly delayed tumor growth and improved the survival of mice compared to individual treatments. In summary, our results suggest that tinostamustine could be a potential candidate to improve the efficacy of anti-CD38 mAbs.


Assuntos
ADP-Ribosil Ciclase 1 , Anticorpos Monoclonais , Mieloma Múltiplo , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Humanos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Camundongos , Linhagem Celular Tumoral , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Sinergismo Farmacológico , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Regulação para Cima/efeitos dos fármacos
2.
Cancers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067236

RESUMO

Multiple myeloma (MM) is a hematological malignancy of plasma cells that proliferate and accumulate within the bone marrow (BM). Work from many groups has made evident that the complex microenvironment of the BM plays a crucial role in myeloma progression and response to therapeutic agents. Within the cellular components of the BM, we will specifically focus on mesenchymal stromal cells (MSCs), which are known to interact with myeloma cells and the other components of the BM through cell to cell, soluble factors and, as more recently evidenced, through extracellular vesicles. Multiple structural and functional abnormalities have been found when characterizing MSCs derived from myeloma patients (MM-MSCs) and comparing them to those from healthy donors (HD-MSCs). Other studies have identified differences in genomic, mRNA, microRNA, histone modification, and DNA methylation profiles. We discuss these distinctive features shaping MM-MSCs and propose a model for the transition from HD-MSCs to MM-MSCs as a consequence of the interaction with myeloma cells. Finally, we review the contribution of MM-MSCs to several aspects of myeloma pathology, specifically to myeloma growth and survival, drug resistance, dissemination and homing, myeloma bone disease, and the induction of a pro-inflammatory and immunosuppressive microenvironment.

3.
Cancers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802806

RESUMO

Immunosuppression is a common feature of multiple myeloma (MM) patients and has been associated with disease evolution from its precursor stages. MM cells promote immunosuppressive effects due to both the secretion of soluble factors, which inhibit the function of immune effector cells, and the recruitment of immunosuppressive populations. Alterations in the expression of surface molecules are also responsible for immunosuppression. In this scenario, immunotherapy, as is the case of immunotherapeutic monoclonal antibodies (mAbs), aims to boost the immune system against tumor cells. In fact, mAbs exert part of their cytotoxic effects through different cellular and soluble immune components and, therefore, patients' immunosuppressive status could reduce their efficacy. Here, we will expose the alterations observed in symptomatic MM, as compared to its precursor stages and healthy subjects, in the main immune populations, especially the inhibition of effector cells and the activation of immunosuppressive populations. Additionally, we will revise the mechanisms responsible for all these alterations, including the interplay between MM cells and immune cells and the interactions among immune cells themselves. We will also summarize the main mechanisms of action of the four mAbs approved so far for the treatment of MM. Finally, we will discuss the potential immune-stimulating effects of non-immunotherapeutic drugs, which could enhance the efficacy of immunotherapeutic treatments.

4.
Cells ; 10(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806619

RESUMO

BH3-mimetics targeting anti-apoptotic proteins such as MCL-1 (S63845) or BCL-2 (venetoclax) are currently being evaluated as effective therapies for the treatment of multiple myeloma (MM). Interleukin 6, produced by mesenchymal stromal cells (MSCs), has been shown to modify the expression of anti-apoptotic proteins and their interaction with the pro-apoptotic BIM protein in MM cells. In this study, we assess the efficacy of S63845 and venetoclax in MM cells in direct co-culture with MSCs derived from MM patients (pMSCs) to identify additional mechanisms involved in the stroma-induced resistance to these agents. MicroRNAs miR-193b-3p and miR-21-5p emerged among the top deregulated miRNAs in myeloma cells when directly co-cultured with pMSCs, and we show their contribution to changes in MCL-1 and BCL-2 protein expression and in the activity of S63845 and venetoclax. Additionally, direct contact with pMSCs under S63845 and/or venetoclax treatment modifies myeloma cell dependence on different BCL-2 family anti-apoptotic proteins in relation to BIM, making myeloma cells more dependent on the non-targeted anti-apoptotic protein or BCL-XL. Finally, we show a potent effect of the combination of S63845 and venetoclax even in the presence of pMSCs, which supports this combinatorial approach for the treatment of MM.


Assuntos
Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Tiofenos/uso terapêutico , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Mieloma Múltiplo/patologia , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia
5.
Nat Commun ; 12(1): 421, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462210

RESUMO

Multiple myeloma (MM) progression and myeloma-associated bone disease (MBD) are highly dependent on bone marrow mesenchymal stromal cells (MSCs). MM-MSCs exhibit abnormal transcriptomes, suggesting the involvement of epigenetic mechanisms governing their tumor-promoting functions and prolonged osteoblast suppression. Here, we identify widespread DNA methylation alterations of bone marrow-isolated MSCs from distinct MM stages, particularly in Homeobox genes involved in osteogenic differentiation that associate with their aberrant expression. Moreover, these DNA methylation changes are recapitulated in vitro by exposing MSCs from healthy individuals to MM cells. Pharmacological targeting of DNMTs and G9a with dual inhibitor CM-272 reverts the expression of hypermethylated osteogenic regulators and promotes osteoblast differentiation of myeloma MSCs. Most importantly, CM-272 treatment prevents tumor-associated bone loss and reduces tumor burden in a murine myeloma model. Our results demonstrate that epigenetic aberrancies mediate the impairment of bone formation in MM, and its targeting by CM-272 is able to reverse MBD.


Assuntos
Antineoplásicos/farmacologia , Doenças Ósseas/tratamento farmacológico , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Doenças Ósseas/diagnóstico , Doenças Ósseas/genética , Doenças Ósseas/patologia , Medula Óssea/patologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/complicações , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancers (Basel) ; 12(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987735

RESUMO

BACKGROUND: Proviral Insertion site for Moloney murine leukemia virus (PIM) kinases are overexpressed in hematologic malignancies, including multiple myeloma. Previous preclinical data from our group demonstrated the anti-myeloma effect of the pan-PIM kinase inhibitor PIM447. METHODS: Based on those data, we evaluate here, by in vitro and in vivo studies, the activity of the triple combination of PIM447 + pomalidomide + dexamethasone (PIM-Pd) in multiple myeloma. RESULTS: Our results show that the PIM-Pd combination exerts a potent anti-myeloma effect in vitro and in vivo, where it markedly delays tumor growth and prolongs survival of treated mice. Mechanism of action studies performed in vitro and on mice tumor samples suggest that the combination PIM-Pd inhibits protein translation processes through the convergent inhibition of c-Myc and mTORC1, which subsequently disrupts the function of eIF4E. Interestingly the MM pro-survival factor IRF4 is also downregulated after PIM-Pd treatment. As a whole, all these molecular changes would promote cell cycle arrest and deregulation of metabolic pathways, including glycolysis and lipid biosynthesis, leading to inhibition of myeloma cell proliferation. CONCLUSIONS: Altogether, our data support the clinical evaluation of the triple combination PIM-Pd for the treatment of patients with multiple myeloma.

8.
Expert Opin Investig Drugs ; 29(1): 5-14, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31815551

RESUMO

Introduction: Kinesin spindle protein (KSP) is indispensable for the proper separation of spindle poles during mitosis. Importantly, this protein is expressed only in cells undergoing cell division and hence represents an appealing target for the treatment of cancer. Many KSP inhibitors have demonstrated a strong antitumoral effect in vitro, however, they have exhibited only limited activity in clinical trials. By contrast, the KSP inhibitor filanesib has demonstrated clinical efficacy in patients with multiple myeloma (MM).Areas covered: This article provides a comprehensive overview about the progress to date in the preclinical and clinical development of filanesib for the treatment of cancer, and particularly, MM.Expert opinion: Responses observed with filanesib alone or in combination with dexamethasone were encouraging in MM. However, the subsequent appearance of highly effective novel agents such as monoclonal antibodies, has hindered the development of agents such as filanesib that exhibit a more limited activity. Nevertheless, filanesib has shown interesting results for some patients when combined with carfilzomib and pomalidomide. Most importantly, the availability of a biomarker of response such as alpha 1-acid glycoprotein (AAG), could be key to the identification of patients that could benefit most from these combinations.


Assuntos
Antimitóticos/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Tiadiazóis/administração & dosagem , Animais , Antimitóticos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Biomarcadores Tumorais/metabolismo , Desenvolvimento de Medicamentos , Humanos , Cinesinas/antagonistas & inibidores , Mieloma Múltiplo/patologia , Tiadiazóis/farmacologia
9.
Medchemcomm ; 10(9): 1589-1598, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31673316

RESUMO

The use of multitarget drugs has evolved as an alternative to "magic bullets" for the treatment of complex diseases such as cancer, in order to affect simultaneously several targets relevant to the disease. We have designed and synthesized a series of dual agents as both Eg5 inhibitors and calcium channel blockers, bearing a 4-aryldihydropyrimidine core. Compound 2 (aryl: 3-nitrophenyl) was selected as potential dual agent due to displaying both activities: it is a vasorelaxant agent (>90% relaxation at 10-5 M in KCl-precontracted aorta rings), it decreases the response to calcium and it is cytotoxic to MCF-7 (breast), HCT-116 (colon) and A-549 (lung) cancer cell lines. The dual mechanism of action was confirmed by blocking (-)-BAY K8644-induced vascular contraction and production of monopolar spindles, typical of Eg5 inhibition. Docking suggests that both (R) and (S)-enantiomers could bind Eg5.

10.
Cells ; 8(11)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766279

RESUMO

A high priority problem in multiple myeloma (MM) management is the development of resistance to administered therapies, with most myeloma patients facing successively shorter periods of response and relapse. Herewith, we review the current knowledge on the mechanisms of resistance to the standard backbones in MM treatment: proteasome inhibitors (PIs), immunomodulatory agents (IMiDs), and monoclonal antibodies (mAbs). In some cases, strategies to overcome resistance have been discerned, and an effort should be made to evaluate whether resensitization to these agents is feasible in the clinical setting. Additionally, at a time in which we are moving towards precision medicine in MM, it is equally important to identify reliable and accurate biomarkers of sensitivity/refractoriness to these main therapeutic agents with the goal of having more efficacious treatments and, if possible, prevent the development of relapse.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Patrimônio Genético , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Padrão de Cuidado , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/normas , Mieloma Múltiplo/metabolismo , Medicina de Precisão/métodos , Medicina de Precisão/normas , Padrão de Cuidado/normas , Resultado do Tratamento
11.
Haematologica ; 102(12): 2113-2124, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28860344

RESUMO

Kinesin spindle protein inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (ARRY-520), an inhibitor of this protein, has demonstrated activity in heavily pre-treated multiple myeloma patients. The aim of the work herein was to investigate the activity of filanesib in combination with pomalidomide plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. The ability of filanesib to enhance the activity of pomalidomide plus dexamethasone was studied in several in vitro and in vivo models. Mechanisms of this synergistic combination were dissected by gene expression profiling, immunostaining, cell cycle and short interfering ribonucleic acid studies. Filanesib showed in vitro, ex vivo, and in vivo synergy with pomalidomide plus dexamethasone treatment. Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and was shown to be mediated by the impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, the triple combination increased the activation of the proapoptotic protein BAX, which has previously been associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone, and supported the initiation of a recently activated trial being conducted by the Spanish Myeloma group which is investigating this combination in relapsed myeloma patients.


Assuntos
Dexametasona/uso terapêutico , Cinesinas/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , Tiadiazóis/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Humanos , Camundongos , Talidomida/uso terapêutico , Resultado do Tratamento
12.
J Hematol Oncol ; 10(1): 127, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28633670

RESUMO

BACKGROUND: Despite recent advances in the treatment of multiple myeloma (MM), the prognosis of most patients remains poor, and resistance to traditional and new drugs frequently occurs. EDO-S101 is a novel therapeutic agent conceived as the fusion of a histone deacetylase inhibitor radical to bendamustine, with the aim of potentiating its alkylating activity. METHODS: The efficacy of EDO-S101 was evaluated in vitro, ex vivo and in vivo, alone, and in combination with standard anti-myeloma agents. The underlying mechanisms of action were also evaluated on MM cell lines, patient samples, and different murine models. RESULTS: EDO-S101 displayed potent activity in vitro in MM cell lines (IC50 1.6-4.8 µM) and ex vivo in cells isolated from MM patients, which was higher than that of bendamustine and independent of the p53 status and previous melphalan resistance. This activity was confirmed in vivo, in a CB17-SCID murine plasmacytoma model and in de novo Vk*MYC mice, leading to a significant survival improvement in both models. In addition, EDO-S101 was the only drug with single-agent activity in the multidrug resistant Vk12653 murine model. Attending to its mechanism of action, the molecule showed both, a HDACi effect (demonstrated by α-tubulin and histone hyperacetylation) and a DNA-damaging effect (shown by an increase in γH2AX); the latter being again clearly more potent than that of bendamustine. Using a reporter plasmid integrated into the genome of some MM cell lines, we demonstrate that, apart from inducing a potent DNA damage, EDO-S101 specifically inhibited the double strand break repair by the homologous recombination pathway. Moreover, EDO-S101 treatment reduced the recruitment of repair proteins such as RAD51 to DNA-damage sites identified as γH2AX foci. Finally, EDO-S101 preclinically synergized with bortezomib, both in vitro and in vivo. CONCLUSION: These findings provide rationale for the clinical investigation of EDO-S101 in MM, either as a single agent or in combination with other anti-MM drugs, particularly proteasome inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cloridrato de Bendamustina/análogos & derivados , Cloridrato de Bendamustina/farmacologia , Cloridrato de Bendamustina/uso terapêutico , Benzimidazóis/química , Benzimidazóis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia
13.
Clin Cancer Res ; 23(1): 225-238, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440267

RESUMO

PURPOSE: PIM kinases are a family of serine/threonine kinases recently proposed as therapeutic targets in oncology. In the present work, we have investigated the effects of the novel pan-PIM kinase inhibitor, PIM447, on myeloma cells and myeloma-associated bone disease using different preclinical models. EXPERIMENTAL DESIGN: In vitro/ex vivo cytotoxicity of PIM447 was evaluated on myeloma cell lines and patient samples. Synergistic combinations with standard treatments were analyzed with Calcusyn Software. PIM447 effects on bone cells were assessed on osteogenic and osteoclastogenic cultures. The mechanisms of PIM447 were explored by immunoblotting, qPCR, and immunofluorescence. A murine model of disseminated multiple myeloma was employed for in vivo studies. RESULTS: PIM447 is cytotoxic for myeloma cells due to cell-cycle disruption and induction of apoptosis mediated by a decrease in phospho-Bad (Ser112) and c-Myc levels and the inhibition of mTORC1 pathway. Importantly, PIM447 demonstrates a very strong synergy with different standard treatments such as bortezomib + dexamethasone (combination index, CI = 0.002), lenalidomide + dexamethasone (CI = 0.065), and pomalidomide + dexamethasone (CI = 0.077). PIM447 also inhibits in vitro osteoclast formation and resorption, downregulates key molecules involved in these processes, and partially disrupts the F-actin ring, while increasing osteoblast activity and mineralization. Finally, PIM447 significantly reduced the tumor burden and prevented tumor-associated bone loss in a disseminated murine model of human myeloma. CONCLUSIONS: Our results demonstrate dual antitumoral and bone-protective effects of PIM447. This fact, together with the very strong synergy exhibited with standard-of-care treatments, supports the future clinical development of this drug in multiple myeloma. Clin Cancer Res; 23(1); 225-38. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Substâncias Protetoras/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Expressão Gênica , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Padrão de Cuidado , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Haematologica ; 102(1): 168-175, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27540138

RESUMO

Despite new advances in multiple myeloma treatment and the consequent improvement in overall survival, most patients relapse or become refractory to treatment. This suggests that new molecules and combinations that may further inhibit important survival pathways for these tumor cells are needed. In this context, zalypsis is a novel compound, derived from marine organisms, with a powerful preclinical anti-myeloma effect based on the sensitivity of malignant plasma cells to DNA-damage induction; and it has already been tested in a phase I/II clinical trial in multiple myeloma. We hypothesized that the addition of this compound to the combination of bortezomib plus dexamethasone may improve efficacy with acceptable toxicity. The triple combination demonstrated strong synergy and higher efficacy compared with double combinations; not only in vitro, but also ex vivo and, especially, in in vivo experiments. The triple combination triggers cell death, mainly through a synergistic induction of DNA damage and a decrease in the nuclear localization of nuclear factor kappa B. Our findings support the clinical evaluation of this combination for relapsed and refractory myeloma patients.


Assuntos
Bortezomib/farmacologia , Dano ao DNA/efeitos dos fármacos , Dexametasona/farmacologia , Mieloma Múltiplo/genética , Tetra-Hidroisoquinolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , NF-kappa B/metabolismo , Transporte Proteico/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Am J Pathol ; 186(8): 2171-2182, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27301357

RESUMO

IL-8 promotes cancer cell growth, survival, angiogenesis, and metastasis in several tumors. Herein, we investigated the sources of IL-8 production in multiple myeloma (MM) and its potential roles in MM pathogenesis. We found that bone marrow cells from patients with MM secreted higher amounts of IL-8 than healthy donors. IL-8 production was detected in cultures of CD138(+) plasma cells and CD138(-) cells isolated from bone marrows of MM patients, and in three of seven human myeloma cell lines (HMCLs) analyzed. Interactions between MM and stromal cells increased IL-8 secretion by stromal cells through cell-cell adhesion and soluble factors. Interestingly, IL8 expression also increased in HMCLs, stromal cells, and osteoclasts after treatment with the antimyeloma drugs melphalan and bortezomib. In fact, the effect of bortezomib on IL-8 production was higher than that exerted by stromal-MM cell interactions. Addition of exogenous IL-8 did not affect growth of HMCLs, although it protected cells from death induced by serum starvation through a caspase-independent mechanism. Furthermore, IL-8 induced by stromal-MM cell interactions strongly contributed to osteoclast formation in vitro, because osteoclastogenesis was markedly reduced by IL-8-specific neutralizing antibodies. In conclusion, our results implicate IL-8 in myeloma bone disease and point to the potential utility of an anti-IL-8 therapy to prevent unwanted effects of IL-8 up-regulation on survival, angiogenesis, and osteolysis in MM.


Assuntos
Interleucina-8/biossíntese , Mieloma Múltiplo/patologia , Osteogênese/fisiologia , Separação Celular , Sobrevivência Celular , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Humanos , Mieloma Múltiplo/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase , Células Estromais/metabolismo , Regulação para Cima
16.
Oncotarget ; 5(18): 8284-305, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25268740

RESUMO

Despite evidence about the implication of the bone marrow (BM) stromal microenvironment in multiple myeloma (MM) cell growth and survival, little is known about the effects of myelomatous cells on BM stromal cells. Mesenchymal stromal cells (MSCs) from healthy donors (dMSCs) or myeloma patients (pMSCs) were co-cultured with the myeloma cell line MM.1S, and the transcriptomic profile of MSCs induced by this interaction was analyzed. Deregulated genes after co-culture common to both d/pMSCs revealed functional involvement in tumor microenvironment cross-talk, myeloma growth induction and drug resistance, angiogenesis and signals for osteoclast activation and osteoblast inhibition. Additional genes induced by co-culture were exclusively deregulated in pMSCs and predominantly associated to RNA processing, the ubiquitine-proteasome pathway, cell cycle regulation, cellular stress and non-canonical Wnt signaling. The upregulated expression of five genes after co-culture (CXCL1, CXCL5 and CXCL6 in d/pMSCs, and Neuregulin 3 and Norrie disease protein exclusively in pMSCs) was confirmed, and functional in vitro assays revealed putative roles in MM pathophysiology. The transcriptomic profile of pMSCs co-cultured with myeloma cells may better reflect that of MSCs in the BM of myeloma patients, and provides new molecular insights to the contribution of these cells to MM pathophysiology and to myeloma bone disease.


Assuntos
Doenças Ósseas/genética , Células da Medula Óssea/metabolismo , Comunicação Celular , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , Mieloma Múltiplo/genética , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Células da Medula Óssea/patologia , Linhagem Celular Tumoral , Análise por Conglomerados , Técnicas de Cocultura , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Humanos , Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , RNA Mensageiro/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Microambiente Tumoral
17.
World J Stem Cells ; 6(3): 322-43, 2014 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-25126382

RESUMO

Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented.

18.
PLoS One ; 9(3): e92378, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24658332

RESUMO

Despite recent advances in the treatment of multiple myeloma (MM), it remains an incurable disease potentially due to the presence of resistant myeloma cancer stem cells (MM-CSC). Although the presence of clonogenic cells in MM was described three decades ago, the phenotype of MM-CSC is still controversial, especially with respect to the expression of syndecan-1 (CD138). Here, we demonstrate the presence of two subpopulations--CD138++ (95-99%) and CD138low (1-5%)--in eight MM cell lines. To find out possible stem-cell-like features, we have phenotypically, genomic and functionally characterized the two subpopulations. Our results show that the minor CD138low subpopulation is morphologically identical to the CD138++ fraction and does not represent a more immature B-cell compartment (with lack of CD19, CD20 and CD27 expression). Moreover, both subpopulations have similar gene expression and genomic profiles. Importantly, both CD138++ and CD138low subpopulations have similar sensitivity to bortezomib, melphalan and doxorubicin. Finally, serial engraftment in CB17-SCID mice shows that CD138++ as well as CD138low cells have self-renewal potential and they are phenotypically interconvertible. Overall, our results differ from previously published data in MM cell lines which attribute a B-cell phenotype to MM-CSC. Future characterization of clonal plasma cell subpopulations in MM patients' samples will guarantee the discovery of more reliable markers able to discriminate true clonogenic myeloma cells.


Assuntos
Mieloma Múltiplo/fisiopatologia , Sindecana-1/genética , Sindecana-1/fisiologia , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Doxorrubicina/farmacologia , Xenoenxertos , Humanos , Imunofenotipagem , Melfalan/farmacologia , Camundongos SCID , Mieloma Múltiplo/imunologia , Células-Tronco Neoplásicas , Fenótipo , Plasmócitos/imunologia , Células Precursoras de Linfócitos B , Pirazinas/farmacologia , Sindecana-1/biossíntese
19.
Clin Cancer Res ; 20(6): 1542-54, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24486586

RESUMO

PURPOSE: MLN9708 (ixazomib citrate), which hydrolyzes to pharmacologically active MLN2238 (ixazomib), is a next-generation proteasome inhibitor with demonstrated preclinical and clinical antimyeloma activity, but yet with an unknown effect on myeloma bone disease. Here, we investigated its bone anabolic and antiresorptive effects in the myeloma setting and in comparison with bortezomib in preclinical models. EXPERIMENTAL DESIGN: The in vitro effect of MLN2238 was tested on osteoclasts and osteoclast precursors from healthy donors and patients with myeloma, and on osteoprogenitors derived from bone marrow mesenchymal stem cells also from both origins. We used an in vivo model of bone marrow-disseminated human myeloma to evaluate MLN2238 antimyeloma and bone activities. RESULTS: Clinically achievable concentrations of MLN2238 markedly inhibited in vitro osteoclastogenesis and osteoclast resorption; these effects involved blockade of RANKL (receptor activator of NF-κB ligand)-induced NF-κB activation, F-actin ring disruption, and diminished expression of αVß3 integrin. A similar range of MLN2238 concentrations promoted in vitro osteoblastogenesis and osteoblast activity (even in osteoprogenitors from patients with myeloma), partly mediated by activation of TCF/ß-catenin signaling and upregulation of the IRE1 component of the unfolded protein response. In a mouse model of bone marrow-disseminated human multiple myeloma, orally administered MLN2238 was equally effective as bortezomib to control tumor burden and also provided a marked benefit in associated bone disease (sustained by both bone anabolic and anticatabolic activities). CONCLUSION: Given favorable data on pharmacologic properties and emerging clinical safety profile of MLN9708, it is conceivable that this proteasome inhibitor may achieve bone beneficial effects in addition to its antimyeloma activity in patients with myeloma.


Assuntos
Compostos de Boro/farmacologia , Glicina/análogos & derivados , Mieloma Múltiplo/metabolismo , Osteoclastos/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Animais , Antineoplásicos/farmacologia , Reabsorção Óssea/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Glicina/farmacologia , Humanos , Immunoblotting , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Blood ; 122(22): 3591-8, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24072855

RESUMO

Circulating myeloma tumor cells (CTCs) as defined by the presence of peripheral blood (PB) clonal plasma cells (PCs) are a powerful prognostic marker in multiple myeloma (MM). However, the biological features of CTCs and their pathophysiological role in MM remains unexplored. Here, we investigate the phenotypic, cytogenetic, and functional characteristics as well as the circadian distribution of CTCs vs paired bone marrow (BM) clonal PCs from MM patients. Our results show that CTCs typically represent a unique subpopulation of all BM clonal PCs, characterized by downregulation (P < .05) of integrins (CD11a/CD11c/CD29/CD49d/CD49e), adhesion (CD33/CD56/CD117/CD138), and activation molecules (CD28/CD38/CD81). Fluorescence in situ hybridization analysis of fluorescence-activated cell sorter-sorted CTCs also unraveled different cytogenetic profiles vs paired BM clonal PCs. Moreover, CTCs were mostly quiescent and associated with higher clonogenic potential when cocultured with BM stromal cells. Most interestingly, CTCs showed a circadian distribution which fluctuates in a similar pattern to that of CD34(+) cells, and opposite to stromal cell-derived factor 1 plasma levels and corresponding surface expression of CXC chemokine receptor 4 on clonal PCs, suggesting that in MM, CTCs may egress to PB to colonize/metastasize other sites in the BM during the patients' resting period.


Assuntos
Mieloma Múltiplo/sangue , Células Neoplásicas Circulantes/patologia , Antígenos CD/sangue , Ciclo Celular , Ritmo Circadiano , Análise Citogenética , Humanos , Imunofenotipagem , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Células Neoplásicas Circulantes/classificação , Células Neoplásicas Circulantes/imunologia , Plasmócitos/classificação , Plasmócitos/imunologia , Plasmócitos/patologia , Prognóstico , Estudos Prospectivos , Ensaio Tumoral de Célula-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...