Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Immunol Immunopathol ; 243: 110351, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800874

RESUMO

Allergen-specific immunotherapy (AIT) constitutes the only curative approach for allergy treatment. There is need for improvement of AIT in veterinary medicine, such as in horses suffering from insect bite hypersensitivity, an IgE-mediated dermatitis to Culicoides. Dendritic cell (DC)-targeting represents an efficient method to increase antigen immunogenicity. It is studied primarily for its use in improvement of cancer therapy and vaccines, but may also be useful for improving AIT efficacy. Immunomodulators, like the Toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid-A (MPLA) has been shown to enhance the IL-10 response in horses, while CpG-rich oligonucleotides (CpG-ODN), acting as TLR-9 agonists, have been shown to induce Th1 or regulatory responses in horses with equine asthma. Our aim was to evaluate in vitro effects of antigen-targeting to equine DC with an antigen-fused peptide known to target human and mouse DC and investigate whether addition of MPLA or CpG-ODN would further improve the induced immune response with regard to finding optimal conditions for equine AIT. For this purpose, DC-binding peptides were fused to the model antigen ovalbumin (OVA) and to the recombinant Culicoides allergen Cul o3. Effects of DC-binding peptides on cellular antigen uptake and induction of T cell proliferation were assessed. Polarity of the immune response was analysed by quantifying IFN-γ, IL-4, IL-10, IL-17 and IFN-α in supernatants of antigen-stimulated peripheral blood mononuclear cells (PBMC) in presence or absence of adjuvants. Fusion of DC-binding peptides to OVA significantly enhanced antigen-uptake by equine DC. DC primed with DC-binding peptides coupled to OVA or Cul o3 induced a significantly higher T-cell proliferation compared to the corresponding control antigens. PBMC stimulation with DC-binding peptides coupled to Cul o3 elicited a significant increase in the pro-inflammatory cytokines IFN-γ, IL-4, IL-17, as well as the anti-inflammatory IL-10, but not of IFN-α. Adjuvant addition further enhanced the effect of the DC-binding peptides by significantly increasing the production of IFN-γ, IL-4, IL-10 and IFN-α (CpG-ODN) and IL-10 (MPLA), while simultaneously suppressing IFN-γ, IL-4 and IL-17 production (MPLA). Targeting equine DC with allergens fused to DC-binding peptides enhances antigen-uptake and T-cell activation and may be useful in increasing the equine immune response against recombinant antigens. Combination of DC-binding peptide protein fusions with adjuvants is necessary to appropriately skew the resulting immune response, depending on intended use. Combination with MPLA is a promising option for improvement of AIT efficacy in horses, while combination with CpG-ODN increases the effector immune response to recombinant antigens.


Assuntos
Adjuvantes Imunológicos , Alérgenos , Linfócitos T/citologia , Animais , Proliferação de Células , Células Cultivadas , Citocinas/imunologia , Células Dendríticas , Cavalos , Fatores Imunológicos , Interleucina-10 , Interleucina-17 , Interleucina-4 , Leucócitos Mononucleares , Lipídeo A/análogos & derivados , Oligodesoxirribonucleotídeos/farmacologia , Ovalbumina
2.
BMC Vet Res ; 12(1): 254, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27846835

RESUMO

BACKGROUND: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. Currently, the gold standard protocol for generating dendritic cells from monocytes across various species relies upon a combination of GM-CSF and IL-4 added to cell culture medium which is supplemented with FBS. The aim of this study was to substitute FBS with heterologous horse serum. For this purpose, equine monocyte-derived dendritic cells (eqMoDC) were generated in the presence of horse serum or FBS and analysed for the effect on morphology, phenotype and immunological properties. Changes in the expression of phenotypic markers (CD14, CD86, CD206) were assessed during dendritic cell maturation by flow cytometry. To obtain a more complete picture of the eqMoDC differentiation and assess possible differences between FBS- and horse serum-driven cultures, a transcriptomic microarray analysis was performed. Lastly, immature eqMoDC were primed with a primary antigen (ovalbumin) or a recall antigen (tetanus toxoid) and, after maturation, were co-cultured with freshly isolated autologous CD5+ T lymphocytes to assess their T cell stimulatory capacity. RESULTS: The microarray analysis demonstrated that eqMoDC generated with horse serum were indistinguishable from those generated with FBS. However, eqMoDC incubated with horse serum-supplemented medium exhibited a more characteristic dendritic cell morphology during differentiation from monocytes. A significant increase in cell viability was also observed in eqMoDC cultured with horse serum. Furthermore, eqMoDC generated in the presence of horse serum were found to be superior in their functional T lymphocyte priming capacity and to elicit significantly less non-specific proliferation. CONCLUSIONS: EqMoDC generated with horse serum-supplemented medium showed improved morphological characteristics, higher cell viability and exhibited a more robust performance in the functional T cell assays. Therefore, horse serum was found to be superior to FBS for generating equine monocyte-derived dendritic cells.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Cavalos , Soro/metabolismo , Animais , Bovinos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/normas , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/efeitos dos fármacos , Monócitos/citologia
3.
J Allergy Clin Immunol ; 138(4): 984-1010, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27577879

RESUMO

There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-ß offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-ß, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases.


Assuntos
Doenças do Sistema Imunitário , Interferons/fisiologia , Interleucinas/fisiologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Humanos
4.
J Immunol ; 194(12): 5895-902, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25941327

RESUMO

The development of vaccines inducing efficient CD8(+) T cell responses is the focus of intense research. Dendritic cells (DCs) expressing the XCR1 chemokine receptor, also known as CD103(+) or CD8α(+) DCs, excel in the presentation of extracellular Ags to CD8(+) T cells. Because of its high numbers of DCs, including XCR1(+) DCs, the skin dermis is an attractive site for vaccine administration. By creating laser-generated micropores through the epidermis, we targeted a model protein Ag fused to XCL1, the ligand of XCR1, to dermal XCR1(+) DCs and induced Ag-specific CD8(+) and CD4(+) T cell responses. Efficient immunization required the emigration of XCR1(+) dermal DCs to draining lymph nodes and occurred irrespective of TLR signaling. Moreover, a single intradermal immunization protected mice against melanoma tumor growth in prophylactic and therapeutic settings, in the absence of exogenous adjuvant. The mild inflammatory milieu created in the dermis by skin laser microporation itself most likely favored the development of potent T cell responses in the absence of exogenous adjuvants. The existence of functionally equivalent XCR1(+) dermal DCs in humans should permit the translation of laser-assisted intradermal delivery of a tumor-specific vaccine targeting XCR1(+) DCs to human cancer immunotherapy. Moreover, considering that the use of adjuvants in vaccines is often associated with safety issues, the possibility of inducing protective responses against melanoma tumor growth independently of the administration of exogenous adjuvants should facilitate the development of safer vaccines.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Neoplasias/imunologia , Receptores de Quimiocinas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Vacinas Anticâncer/administração & dosagem , Quimiocinas C/genética , Quimiocinas C/metabolismo , Modelos Animais de Doenças , Injeções Intradérmicas , Melanoma Experimental , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Ovalbumina/genética , Ovalbumina/imunologia , Ligação Proteica , Receptores de Quimiocinas/genética , Subpopulações de Linfócitos T/imunologia , Carga Tumoral/imunologia
6.
Methods Enzymol ; 480: 141-50, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20816208

RESUMO

Recent studies suggest that a specific class of fungal lectins, commonly referred to as fruiting body lectins, play a role as effector molecules in the defense of fungi against predators and parasites. Hallmarks of these fungal lectins are their specific expression in reproductive structures, fruiting bodies, and/or sclerotia and their synthesis on free ribosomes in the cytoplasm. Fruiting body lectins are released upon damage of the fungal cell and bind to specific carbohydrate structures of predators and parasites, which leads to deterrence, inhibition of growth, and development or even killing of these organisms. Here, we describe assays to assess the toxicity of such lectins and other cytoplasmic proteins toward three different model organisms: the insect Aedes aegypti, the nematode Caenorhabditis elegans, and the amoeba Acanthamoeba castellanii. All three assays are based on heterologous expression of the examined proteins in the cytoplasm of Escherichia coli and feeding of these recombinant bacteria to omnivorous and bacterivorous organisms.


Assuntos
Citoplasma/química , Carpóforos/química , Proteínas Fúngicas/toxicidade , Lectinas/toxicidade , Testes de Toxicidade/métodos , Acanthamoeba castellanii , Aedes , Animais , Caenorhabditis elegans , Citoplasma/genética , Citoplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Carpóforos/genética , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Humanos , Lectinas/análise , Lectinas/genética , Lectinas/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...