Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 291(6): C1395-404, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16837649

RESUMO

The Na(+)-dependent nucleoside transporter 2 (CNT2) mediates active transport of purine nucleosides and uridine as well as therapeutic nucleoside analogs. We used the two-electrode voltage-clamp technique to investigate rat CNT2 (rCNT2) transport mechanism and study the interaction of nucleoside-derived drugs with the transporter expressed in Xenopus laevis oocytes. The kinetic parameters for sodium, natural nucleosides, and nucleoside derivatives were obtained as a function of membrane potential. For natural substrates, apparent affinity (K(0.5)) was in the low micromolar range (12-34) and was voltage independent for hyperpolarizing membrane potentials, whereas maximal current (I(max)) was voltage dependent. Uridine and 2'-deoxyuridine analogs modified at the 5-position were substrates of rCNT2. Lack of the 2'-hydroxyl group decreased affinity but increased I(max). Increase in the size and decrease in the electronegativity of the residue at the 5-position affected the interaction with the transporter by decreasing both affinity and I(max). Fludarabine and formycin B were also transported with higher I(max) than uridine and moderate affinity (102 +/- 10 and 66 +/- 6 microM, respectively). Analysis of the pre-steady-state currents revealed a half-maximal activation voltage of about -39 mV and a valence of about -0.8. K(0.5) for Na(+) was 2.3 mM at -50 mV and decreased at hyperpolarizing membrane potentials. The Hill coefficient was 1 at all voltages. Direct measurements of radiolabeled nucleoside fluxes with the charge associated showed a ratio of two positive inward charges per nucleoside, suggesting a stoichiometry of two Na(+) per nucleoside. This discrepancy in the number of Na(+) molecules that bind rCNT2 may indicate a low degree of cooperativity between the Na(+) binding sites.


Assuntos
Desenho de Fármacos , Proteínas de Membrana Transportadoras/metabolismo , Nucleosídeos , Animais , Transporte Biológico/fisiologia , Potenciais da Membrana/fisiologia , Proteínas de Membrana Transportadoras/genética , Estrutura Molecular , Nucleosídeos/química , Nucleosídeos/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ratos , Sódio/metabolismo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...