Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(20): 3538-3542, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37114347

RESUMO

The entangled structure of polymeric materials is often described as resembling a bowl of spaghetti, swarms of earthworms, or snakes. These analogies not only illustrate the concept, but form the foundation of polymer physics. However, the similarity between these macroscopic, athermal systems and polymers in terms of topology remains uncertain. To better understand this relationship, we conducted an experiment using X-ray tomography to study the structure of arrays of linear rubber bands. We found that, similar to linear polymers, the average number of entanglements increases linearly with the length of the ribbons. Additionally, we observed that entanglements are less frequent near the surface of the container, where there are also more ends, similar to what has been seen in trapped polymers. These findings provide the first experimental evidence supporting the visualization of polymer structures using macroscopic, athermal analogues, confirming the initial intuitive insights of the pioneers of polymer physics.

2.
Biomacromolecules ; 24(4): 1912-1923, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36877869

RESUMO

Elastin-like peptides (ELPs) are artificially derived intrinsically disordered proteins (IDPs) mimicking the hydrophobic repeat unit in the protein elastin. ELPs are characterized by a lower critical solution temperature (LCST) in aqueous media. Here, we investigate the sequence GVG(VPGVG)3 over a wide range of temperatures (below, around, and above the LCST) and peptide concentrations employing all-atom molecular dynamics simulations, where we focus on the role of intra- and interpeptide interactions. We begin by investigating the structural properties of a single peptide that demonstrates a hydrophobic collapse with temperature, albeit moderate, because the sequence length is short. We observe a change in the interaction between two peptides from repulsive to attractive with temperature by evaluating the potential of mean force, indicating an LCST-like behavior. Next, we explore dynamical and structural properties of peptides in multichain systems. We report the formation of dynamical aggregates with coil-like conformation, in which valine central residues play an important role. Moreover, the lifetime of contacts between chains strongly depends on the temperature and can be described by a power-law decay that is consistent with the LCST-like behavior. Finally, the peptide translational and internal motion are slowed by an increase in the peptide concentration and temperature.


Assuntos
Elastina , Peptídeos , Temperatura , Elastina/química , Peptídeos/química , Temperatura Baixa , Simulação de Dinâmica Molecular
3.
JCO Oncol Pract ; 19(4): e476-e483, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36638330

RESUMO

PURPOSE: Numerous biologic drugs will soon be facing biosimilar competition. We study the case of trastuzumab, a revolutionary drug approved in 1998 to treat human epidermal growth factor receptor 2-positive breast cancer, to understand how trends in the price and treatment cost of the originator brand and biosimilar forms of trastuzumab evolved following biosimilar entry. METHODS: We use average sales price data from the Centers for Medicare and Medicaid Services, adjusted for inflation to real 2020 dollars using the consumer price index, to describe price changes for the originator biologic and biosimilar versions of trastuzumab between 2019, when the first biosimilar was covered by Medicare, and 2022, when a total of five biosimilar competitors were on the market. We also estimate total treatment costs of biologic and biosimilar forms of trastuzumab from 2005 to 2022 and describe changes in their market share. RESULTS: We find that the first biosimilar entrant's price was 15% lower than the originator brand in 2019, and the fifth biosimilar entrant's price in 2022 was 58% lower than the originator brand in 2019. Contrary to expectations from prior research, the originator biologic price in 2022 decreased 29% from its 2019 average sales price. Average treatment cost for the biologic and biosimilar versions of trastuzumab combined was $45,659 US dollars lower in 2022 compared with the year before biosimilar entry, 2018. Finally, biosimilar market share grew from only 7% in the first year of entry to 32% in the second year, when three biosimilars were on the market. CONCLUSION: Biosimilar entry may be an effective means of decreasing the cost of biologic cancer treatments. Our findings suggest that policies that support biosimilar entry and encourage use may expand access to necessary treatment and reduce health care costs.


Assuntos
Medicamentos Biossimilares , Neoplasias da Mama , Idoso , Humanos , Estados Unidos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Medicamentos Biossimilares/farmacologia , Medicamentos Biossimilares/uso terapêutico , Medicare , Neoplasias da Mama/tratamento farmacológico
4.
Rev Sci Instrum ; 93(10): 105101, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319312

RESUMO

Here, we build and characterize a single-stage gas-gun microparticle accelerator, where a pressurized gas expands and launches particles on a target. The microparticles in the range of 60-250 µm are accelerated by the expansion of pressurized nitrogen. By using a high-speed camera, we study how the velocity distribution of accelerated particles is modified by particle size, pressure in the gas reservoir, valve's opening time, and diaphragm's thickness and composition. We employ this microparticle accelerator to study the impact of glass particles with diameters of (69 ± 6) µm accelerated at moderate velocities ∼ (10-25) m/s, using films of poly-dimethylsiloxane as targets.

5.
J Chem Phys ; 156(12): 126101, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364874

RESUMO

We investigate the temperature dependence of thermodynamic (density and isobaric heat capacity), dynamical (self-diffusion coefficient and shear viscosity), and dielectric properties of several water models, such as the commonly employed TIP3P water model, the well-established four-point water model TIP4P-2005, and the recently developed four-point water model TIP4P-D. We focus on the temperature range of interest for the field of computational biophysics and soft matter (280-350 K). The four-point water models lead to a spectacularly improved agreement with experimental data, strongly suggesting that the use of more modern parameterizations should be favored compared to the more traditional TIP3P for modeling temperature-dependent phenomena in biomolecular systems.


Assuntos
Água , Temperatura , Termodinâmica , Viscosidade
6.
ACS Appl Mater Interfaces ; 14(4): 5843-5855, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048694

RESUMO

Near-infrared (NIR) radiation plays an important role in guided external stimulus therapies; its application in bone-related treatments is becoming more and more frequent. Therefore, metallic biomaterials that exhibit properties activated by NIR are promising for further orthopedic procedures. In this work, we present an adapted electroforming approach to attain a biomorphic nano-holed TiO2 coating on Ti6Al4V alloy. Through a precise control of the anodization conditions, structures revealed the formation of localized nano-pores arranged in a periodic assembly. This specific organization provoked higher stability against thermal oxidation and precise hydrophobic wettability behavior according to Cassie-Baxter's model; both characteristics are a prerequisite to ensure a favorable biological response in an implantable structure for guided bone regeneration. In addition, the periodically arranged sub-wavelength-sized unit cell on the metallic-dielectric structure exhibits a peculiar optical response, which results in higher NIR reflectivity. Accordingly, we have proved that this effect enhances the efficiency of the scattering processes and provokes a significant improvement of light confinement producing a spontaneous NIR fluorescence emission. The combination of the already favorable mechanical and biocompatibility properties of Ti6Al4V, along with suitable thermal stability, wetting, and electro-optical behavior, opens a promising path toward strategic bone therapeutic procedures.


Assuntos
Ligas/química , Materiais Biomiméticos/química , Materiais Revestidos Biocompatíveis/química , Ligas/efeitos da radiação , Materiais Biomiméticos/efeitos da radiação , Materiais Revestidos Biocompatíveis/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas , Raios Infravermelhos , Porosidade , Titânio/química , Titânio/efeitos da radiação , Molhabilidade
7.
ACS Appl Mater Interfaces ; 13(25): 30086-30097, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34151554

RESUMO

Natural biological surfaces exhibit interesting properties due to their inhomogeneous chemical and physical structure at the micro- and nanoscale. In the case of hair or skin, this also influences how waterborne macromolecules ingredients will adsorb and form cosmetically performing deposits (i.e., shampoos, cleansers, etc.). Here, we study the adsorption of hydrophilic flexible homopolymers on heterogeneous, chemically patterned substrates that represent the surface of the hair by employing coarse-grained molecular dynamics simulations. We develop a method in which the experimental images of the substrate are used to obtain information about the surface properties. We investigate the polymer adsorption as a function of polymer chain length and polymer concentration spanning both dilute and semidilute regimes. Adsorbed structures are quantified in terms of trains, loops, and tails. We show that upon increasing polymer concentration, the length of tails and loops increases at the cost of monomers belonging to trains. Furthermore, using an effective description, we probe the stability of the resulting adsorbed structures under a linear shear flow. Our work is a first step toward developing models of complex macromolecules interacting with realistic biological surfaces, as needed for the development of more ecofriendly industrial products.

8.
Proc Natl Acad Sci U S A ; 117(7): 3382-3387, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32024763

RESUMO

Unraveling the packing structure of dense assemblies of semiflexible rings is not only fundamental for the dynamical description of polymer rings, but also key to understand biopackaging, such as observed in circular DNA of viruses or genome folding. Here we use X-ray tomography to study the geometrical and topological features of disordered packings of rubber bands in a cylindrical container. Assemblies of short bands assume a liquid-like disordered structure, with short-range orientational order, and reveal only minor influence of the container. In the case of longer bands, the confinement causes folded configurations and the bands interpenetrate and entangle. Most of the systems are found to display a threading network which percolates the system. Surprisingly, for long bands whose diameter is more than twice the diameter of the container, we found that all bands interpenetrate each other, in a complex fully entangled structure.

9.
Phys Rev E ; 97(1-1): 012117, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448486

RESUMO

We use Monte Carlo simulations to study the finite temperature behavior of vortices in the XY model for tangent vector order on curved backgrounds. Contrary to naive expectations, we show that the underlying geometry does not affect the proliferation of vortices with temperature respect to what is observed on a flat surface. Long-range order in these systems is analyzed by using two-point correlation functions. As expected, in the case of slightly curved substrates these correlations behave similarly to the plane. However, for high curvatures, the presence of geometry-induced unbounded vortices at low temperatures produces the rapid decay of correlations and an apparent lack of long-range order. Our results shed light on the finite-temperature physics of soft-matter systems and anisotropic magnets deposited on curved substrates.

10.
Proc Natl Acad Sci U S A ; 112(41): 12639-44, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26420873

RESUMO

Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations.

11.
Nat Commun ; 6: 6856, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25896725

RESUMO

Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature.

12.
Soft Matter ; 11(5): 898-907, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25491780

RESUMO

In this work we study the processes of defect formation and coarsening of two-dimensional (2D) curved crystal structures. These processes are found to strongly deviate from their counterparts in flat systems. In curved backgrounds the process of defect formation is deeply affected by the curvature, and at the onset of a phase transition the early density of defects becomes highly inhomogeneous. We observe that even a single growing crystal can produce varying densities of defects depending on its initial position and local orientation with regard to the substrate. This process is completely different from flat space, where grain boundaries are formed due to the impingement of different propagating crystals. Quenching the liquid into the crystal phase leads to the formation of a curved polycrystalline structure, characterized by complex arrays of defects. During annealing, mechanisms of geodesic curvature-driven grain boundary motion and defect annihilation lead to increasing crystalline order. Linear arrays of defects diffuse to regions of high curvature, where they are absorbed by disclinations. At the early stage of coarsening the density of dislocations is insensitive to the geometry while the population of isolated disclinations is deeply affected by curvature. The regions with high curvature act as traps for the diffusion of different structures of defects, including disclinations and domain walls.

13.
Artigo em Inglês | MEDLINE | ID: mdl-23944462

RESUMO

We study the evolution from a liquid to a crystal phase in two-dimensional curved space. At early times, while crystal seeds grow preferentially in regions of low curvature, the lattice frustration produced in regions with high curvature is rapidly relaxed through isolated defects. Further relaxation involves a mechanism of crystal growth and defect annihilation where regions with high curvature act as sinks for the diffusion of domain walls. The pinning of grain boundaries at regions of low curvature leads to the formation of a metastable structure of defects, characterized by asymptotically slow dynamics of ordering and activation energies dictated by the largest curvatures of the system. These glassylike ordering dynamics may completely inhibit the appearance of the ground-state structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...