Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Mater ; 36(9): e2307461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37917032

RESUMO

Although electro-organic synthesis is currently receiving renewed interest because of its potential to enable sustainability in chemical processes to value-added products, challenges in process development persist: For reductive transformations performed in protic media, an inherent issue is the limited choice of metallic cathode materials that can effectively suppress the parasitic hydrogen evolution reaction (HER) while maintaining a high activity toward the targeted electro-organic reaction. Current development trends are aimed at avoiding the previously used HER-suppressing elements (Cd, Hg, and Pb) because of their toxicity. Here, this work reports the rational design of highly porous foam-type binary and ternary electrocatalysts with reduced Pb content. Optimized cathodes are tested in electro-organic reductions using an oxime to nitrile transformation as a model reaction relevant for the synthesis of fine chemicals. Their electrocatalytic performance is compared with that of the model CuSn7Pb15 bronze alloy that has recently been endorsed as the best cathode replacement for bare Pb electrodes. All developed metal foam catalysts outperform both bare Pb and the CuSn7Pb15 benchmark in terms of chemical yield and energetic efficiency. Moreover, post-electrolysis analysis of the crude electrolyte mixture and the cathode's surfaces through inductively coupled plasma mass spectrometry (ICP-MS) and scanning electron microscopy (SEM), respectively, reveal the foam catalysts' elevated resistance to cathodic corrosion.

2.
Ecology ; 105(1): e4202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926483

RESUMO

Food webs are complex ecological networks that reveal species interactions and energy flow in ecosystems. Prevailing ecological knowledge on forested streams suggests that their food webs are based on allochthonous carbon, driven by a constant supply of organic matter from adjacent vegetation and limited primary production due to low light conditions. Extreme climatic disturbances can disrupt these natural ecosystem dynamics by altering resource availability, which leads to changes in food web structure and functioning. Here, we quantify the response of stream food webs to two major hurricanes (Irma and María, Category 5 and 4, respectively) that struck Puerto Rico in September 2017. Within two tropical forested streams (first and second order), we collected ecosystem and food web data 6 months prior to the hurricanes and 2, 9, and 18 months afterward. We assessed the structural (e.g., canopy) and hydrological (e.g., discharge) characteristics of the ecosystem and monitored changes in basal resources (i.e., algae, biofilm, and leaf litter), consumers (e.g., aquatic invertebrates, riparian consumers), and applied Layman's community-wide metrics using the isotopic composition of 13 C and 15 N. Continuous stream discharge measurements indicated that the hurricanes did not cause an extreme hydrological event. However, the sixfold increase in canopy openness and associated changes in litter input appeared to trigger an increase in primary production. These food webs were primarily based on terrestrially derived carbon before the hurricanes, but most taxa (including Atya and Xiphocaris shrimp, the consumers with highest biomass) shifted their food source to autochthonous carbon within 2 months of the hurricanes. We also found evidence that the hurricanes dramatically altered the structure of the food web, resulting in shorter (i.e., smaller food-chain length), narrower (i.e., lower diversity of carbon sources) food webs, as well as increased trophic species packing. This study demonstrates how hurricane disturbance can alter stream food webs, changing the trophic base from allochthonous to autochthonous resources via changes in the physical environment (i.e., canopy defoliation). As hurricanes become more frequent and severe due to climate change, our findings greatly contribute to our understanding of the mechanisms that maintain forested stream trophic interactions amidst global change.


Assuntos
Tempestades Ciclônicas , Cadeia Alimentar , Animais , Ecossistema , Invertebrados/fisiologia , Carbono
3.
PLoS One ; 18(12): e0295738, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100504

RESUMO

The relative importance of allochthonous and autochthonous carbon (C) as sources of energy for tropical stream food webs remains an open question. Allochthonous C might be the main energy source for small and shaded forest streams, while autochthonous C is more likely to fuel food webs draining land uses with less dense vegetation. We studied food webs in cloud forest streams draining watersheds with forests, coffee plantations, and pastures. Our goal was to assess the effects of those land uses on the C source and structure of stream food webs. The study took place in tropical montane streams in La Antigua Watershed, in eastern Mexico. We selected three streams per land use and sampled biofilm and leaf litter as the main food resources, and macroinvertebrates and aquatic vertebrates from different trophic guilds. Samples were analyzed for δ13C and δ15N isotopes. Using a Bayesian mixing model, we estimated the proportional assimilation of autochthonous and allochthonous carbon by each guild. We found that consumers were mostly using allochthonous C in all streams, regardless of watershed land use. Our findings indicate that montane cloud forest streams are dominated by allochthony even in watersheds dominated by pastures. Abundant precipitation in this life zone might facilitate the movement of allochthonous C into streams. While food webs of streams from coffee plantations and pastures also rely on allochthonous resources, other impacts do result in important changes in stream functioning.


Assuntos
Carbono , Cadeia Alimentar , Animais , Teorema de Bayes , Florestas , Biofilmes , Ecossistema
4.
JACS Au ; 3(1): 124-130, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711103

RESUMO

Enzymatic electrocatalysis holds promise for new biotechnological approaches to produce chemical commodities such as molecular hydrogen (H2). However, typical inhibitory limitations include low stability and/or low electrocatalytic currents (low product yields). Here we report a facile single-step electrode preparation procedure using indium-tin oxide nanoparticles on carbon electrodes. The subsequent immobilization of a model [FeFe]-hydrogenase from Clostridium pasteurianum ("CpI") on the functionalized carbon electrode permits comparatively large quantities of H2 to be produced in a stable manner. Specifically, we observe current densities of >8 mA/cm2 at -0.8 V vs the standard hydrogen electrode (SHE) by direct electron transfer (DET) from cyclic voltammetry, with an onset potential for H2 production close to its standard potential at pH 7 (approximately -0.4 V vs. SHE). Importantly, hydrogenase-modified electrodes show high stability retaining ∼92% of their electrocatalytic current after 120 h of continuous potentiostatic H2 production at -0.6 V vs. SHE; gas chromatography confirmed ∼100% Faradaic efficiency. As the bioelectrode preparation method balances simplicity, performance, and stability, it paves the way for DET on other electroenzymatic reactions as well as semiartificial photosynthesis.

5.
Podium (Pinar Río) ; 16(3): 783-798, 2021. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1351318

RESUMO

RESUMEN El deporte actual motiva la búsqueda de nuevas soluciones que permitan al atleta responder a altas exigencias físicas dentro de un deporte sostenible. Una solución es la búsqueda de pruebas para el control del rendimiento. El objetivo consistió en proponer un test de campo para la evaluación de la capacidad aeróbica y realizar un triatlón con valores inferiores en cuanto a distancia y duración respecto al triatlón sprint. Este estudio presenta una propuesta de test de campo para la evaluación de la capacidad aeróbica, realizando triatlones con distancias inferiores. La distancia se determinó mediante un estudio práctico de la actividad competitiva. La validación de los test fue aplicado a 12 atletas de la categoría juvenil, con una edad promedio de 16, 3 años (± 1,3). La validez de contenido se comprobó mediante el criterio de 12 especialistas que afirmaron que este representa de manera adecuada la capacidad aeróbica. La confiabilidad y la concordancia se comprobaron mediante la prueba de rangos de Wilcoxon, con una significación asintótica de 0,574. Por el criterio de equivalencia, se monitorizó la prueba mediante la comparación de valores de frecuencia cardíaca del test con los de un triatlón sprint simulado. Para la validez contrastada, se compararon los resultados de los triatletas con los de cinco nadadores, tres ciclistas y dos corredores de fondo. Los tiempos del test fueron inferiores en los triatletas, lo que confirmó que es específico para triatletas.


RESUMO O esporte de hoje motiva a busca de novas soluções que permitam ao atleta atender a altas exigências físicas dentro de um esporte sustentável. Uma solução é a busca de testes de monitoramento de rendimento. O objetivo era propor um teste de campo para a avaliação da capacidade aeróbica e realizar um triatlo com valores mais baixos em termos de distância e duração do que um triatlo de sprint. Este estudo apresenta uma proposta de teste de campo para a avaliação da capacidade aeróbica, realizando triatlos com distâncias mais curtas. A distância foi determinada por um estudo prático da atividade competitiva. A validação dos testes foi aplicada a 12 atletas da categoria jovem, com idade média de 16,3 anos (± 1,3). A validez do conteúdo foi verificada pelos critérios de 12 especialistas que afirmaram que ele representa adequadamente a capacidade aeróbica. A confiabilidade e a concordância foram testadas por Wilcoxon rank test, com um significado assimptótico de 0,574. Para o critério de equivalência, o teste foi monitorado pela comparação dos valores de frequência cardíaca do teste com os de um triatlo de sprint simulado. Para a validade do teste, os resultados dos triatletas foram comparados com os de cinco nadadores, três ciclistas e dois corredores de longa distância. Os tempos de teste foram menores nos triatletas, confirmando que é específico para os triatletas.


ABSTRACTS Today's sport motivates the search for new solutions that allow the athlete to respond to high physical demands within a sustainable sport. One solution is to search for tests for performance monitoring. The aim of this study is to propose a field test for the evaluation of aerobic capacity, carrying out a triathlon with lower values in terms of distance and duration with respect to the sprint triathlon. The study presents a field test proposal for the evaluation of aerobic capacity performing triathlons with shorter distances. The distance was determined through a practical study of competitive activity. In the validation, the test was applied to 12 athletes of the youth category with an average age of 16.3 years (± 1,3). The content validity was verified using the criteria of 12 specialists who stated that it adequately represents the aerobic capacity. Reliability and concordance were checked using the Wilcoxon rank test where asymptotic significance was 0.574. By the equivalence criterion, the test was monitored by comparing heart rate values with those of a simulated sprint triathlon. For the contrasted validity, the results of the triathletes were compared with those of five swimmers, three cyclists and two long-distance runners. The test times were lower in the triathletes, confirming that the test is specific for triathletes.

6.
Chimia (Aarau) ; 75(9): 733-743, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526178

RESUMO

In this mini-review we compare two prototypical metal foam electrocatalysts applied to the transformation of CO2 into value-added products (e.g. alcohols on Cu foams and formate on Bi foams). A substantial improvement in the catalyst performance is typically achieved through thermal annealing of the as-deposited foam materials, followed by the electro-reduction of the pre-formed oxidic precursors prior or during the actual CO2 electrolysis. Utilizing highly insightful and sensitive complementary operando analytical techniques (XAS, XRD, and Raman spectroscopy) we demonstrate that this catalyst pre-activation process is entirely accomplished in case of the oxidized Cu foams prior to the formation of hydrocarbons and alcohols from the CO2. The actually active catalyst is therefore the metallic Cu derived from the precursor by means of oxide electro-reduction. Conversely, in their oxidic form, the Cu-based foam catalysts are inactive towards the CO2 reduction reaction (denoted ec-CO2 RR). Oxidized Bi foams can be regarded as an excellent counter example to the above-mentioned Cu case as both metallic and the thermally derived oxidic Bi foams are highly active towards ec-CO2 RR (formate production). Indeed, operando Raman spectroscopy reveals that CO2 electrolysis occurs upon its embedment into the oxidic Bi2O3 foam precursor, which itself undergoes partial transformation into an active sub-carbonate phase. The potential-dependent transition of sub-carbonates/oxides into the corresponding metallic Bi foam dictates the characteristic changes of the ec-CO2 RR pathway. Identical location (IL) microscopic inspection of the catalyst materials, e.g. by means of scanning electron microscopy, demonstrates substantial morphological alterations on the nm length scale on the material surface as consequence of the sub-carbonate formation and the potential-driven oxide reduction into the metallic Bi foam. The foam morphology on a mesoscopic length scale (macroporosity) remains, by contrast, fully unaffected by these phase transitions.

7.
Nat Commun ; 12(1): 3700, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140471

RESUMO

The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent.


Assuntos
Biota , Ecossistema , Rios , Animais , Biodiversidade , Biomassa , Tamanho Corporal , Chironomidae/fisiologia , Clima , Ephemeroptera/fisiologia , Insetos/fisiologia , Folhas de Planta/química , Floresta Úmida , Rios/química , Rios/microbiologia , Rios/parasitologia , Rios/virologia , Clima Tropical , Tundra
8.
Chimia (Aarau) ; 75(3): 163-168, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33766198

RESUMO

Metallic nanoparticles of different shape can be used as efficient electrocatalysts for many technologically and environmentally relevant processes, like the electroreduction of CO2. Intense research is thus targeted at finding the morphology of nanosized features that best suits catalytic needs. In order to control the shape and size distribution of the designed nanoobjects, and to prevent their aggregation, synthesis routes often rely on the use of organic capping agents (surfactants). It is known, however, that these agents tend to remain adsorbed on the surface of the synthesized nanoparticles and may significantly impair their catalytic performance, both in terms of overall yield and of product selectivity. It thus became a standard procedure to apply certain methods (e.g. involving UV-ozone or plasma treatments) for the removal of capping agents from the surface of nanoparticles, before they are used as catalysts. Proper design of the operating procedure of the electrocatalysis process may, however, render such cleaning steps unnecessary. In this paper we use poly-vinylpyrrolidone (PVP) capped Ag nanocubes to demonstrate a mere electrochemical, operando activation method. The proposed method is based on an observed hysteresis of the catalytic yield of CO (the desired product of CO2 electroreduction) as a function of the applied potential. When as-synthesized nanocubes were directly used for CO2 electroreduction, the CO yield was rather low at moderate overpotentials. However, following a potential excursion to more negative potentials, most of the (blocking) PVP was irreversibly removed from the catalyst surface, allowing a significantly higher catalytic yield even under less harsh operating conditions. The described hysteresis of the product distribution is shown to be of transient nature, and following operando activation by a single 'break-in' cycle, a truly efficient catalyst was obtained that retained its stability during long hours of operation.

9.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33771867

RESUMO

Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.

10.
Sci Rep ; 10(1): 9641, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32541786

RESUMO

For the last four decades space exploration missions have searched for molecular life on planetary surfaces beyond Earth. Often pyrolysis gas chromatography mass spectrometry has been used as payload on such space exploration missions. These instruments have relatively low detection sensitivity and their measurements are often undermined by the presence of chloride salts and minerals. Currently, ocean worlds in the outer Solar System, such as the icy moons Europa and Enceladus, represent potentially habitable environments and are therefore prime targets for the search for biosignatures. For future space exploration missions, novel measurement concepts, capable of detecting low concentrations of biomolecules with significantly improved sensitivity and specificity are required. Here we report on a novel analytical technique for the detection of extremely low concentrations of amino acids using ORIGIN, a compact and lightweight laser desorption ionization - mass spectrometer designed and developed for in situ space exploration missions. The identified unique mass fragmentation patterns of amino acids coupled to a multi-position laser scan, allows for a robust identification and quantification of amino acids. With a detection limit of a few fmol mm-2, and the possibility for sub-fmol detection sensitivity, this measurement technique excels current space exploration systems by three orders of magnitude. Moreover, our detection method is not affected by chemical alterations through surface minerals and/or salts, such as NaCl that is expected to be present at the percent level on ocean worlds. Our results demonstrate that ORIGIN is a promising instrument for the detection of signatures of life and ready for upcoming space missions, such as the Europa Lander.


Assuntos
Aminoácidos/análise , Meio Ambiente Extraterreno/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
11.
Anal Chem ; 92(6): 4301-4308, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32081004

RESUMO

The use of rotating disk electrodes (RDEs) is probably the most convenient way of studying simple electrode reactions under well-defined transport conditions. Standard RDEs become, however, less expedient when the studied electrode process is a complex one, leading to the formation of various reaction products. In these cases, the accurate detection and quantification of the formed products are desirable. If the formed products are gaseous, then the usual way of quantifying them is the use of online gas chromatography (GC), a method that is not compatible with open RDE cells. In order to overcome these difficulties, we present here a sophisticated inverted RDE (iRDE) cell design. The design combines various advantages: it is amenable to the same mathematical treatment as standard (downward-facing) RDEs; it can be operated airtight and coupled to online GC; and due to its upward-facing design, the electrode surface is less prone to blockage by any formed gas bubbles. The iRDE&GC design is tested using simple model reactions and is demonstratively used for studying the electrochemical reduction of CO2, accompanied by parasitic hydrogen evolution, on a silver electrode.

12.
Podium (Pinar Río) ; 14(3): 527-542, sept.-dic. 2019.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1091731

RESUMO

Resumen En el deporte actual, donde las exigencias físicas son cada vez mayores, no puede concebirse una correcta preparación sin un control riguroso de esta. Como medios de control son utilizadas las pruebas o test. Estos deben cumplir ciertas condiciones, dentro de las que se encuentra responder a las características de la actividad competitiva en la que participa el deportista. La condición de especificidad, a la que deben responder los procedimientos de control, constituye una de las más importantes en el momento de la evaluación del rendimiento del triatleta. En esta revisión, se pretendió conocer cómo se cumple dicha condición en los test utilizados en la actualidad para la evaluación del triatleta en la distancia sprint. Del nivel teórico, se utilizó la Inducción y deducción y del nivel empírico, la revisión documental. Los test para su estudio fueron clasificados en pruebas de laboratorio, pruebas de campo y pruebas mixtas. La principal conclusión obtenida es que existe un predominio de las pruebas de laboratorio, los test utilizados se caracterizan por ser parcelados donde se evalúan segmentos de la competencia del triatlonista y no la competencia en sí y, aunque se hacen esfuerzos, aún no se estudia al atleta en condiciones similares a las de competencia.


Abstract In today's sport, where the physical demands are increasing, a correct preparation cannot be conceived without a rigorous control of it. Tests are used as means of control. These must meet certain conditions, within which is to respond to the characteristics of the competitive activity in which the athlete participates. The condition of specificity to which the control procedures must respond is one of the most important at the time of evaluating the triathlete's performance. In this review we tried to know how this condition is fulfilled in the tests currently used for the evaluation of the triathlete in sprint distance. From the theoretical level, the induction and deduction was used, and the documentary review was used empirically. The tests for their study were classified into laboratory tests, field tests and mixed tests. The main conclusion is that there is a predominance of laboratory tests, the tests used are characterized by being parceled where segments of the competition of the triathlete are evaluated and not the competition itself and although efforts are carried out the athlete is not studied in conditions similar to those of competition.

13.
Chimia (Aarau) ; 73(11): 922-927, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31753073

RESUMO

In this work, we discuss the application of a gas diffusion electrode (GDE) setup for benchmarking electrocatalysts for the reductive conversion of CO2 (CO2 RR: CO2 reduction reaction). Applying a silver nanowire (Ag-NW) based catalyst, it is demonstrated that in the GDE setup conditions can be reached, which are relevant for the industrial conversion of CO2 to CO. This reaction is part of the so-called 'Rheticus' process that uses the CO for the subsequent production of butanol and hexanol based on a fermentation approach. In contrast to conventional half-cell measurements using a liquid electrolyte, in the GDE setup CO2 RR current densities comparable to technical cells (>100 mA cm-2) are reached without suffering from mass transport limitations of the CO2 reactant gas. The results are of particular importance for designing CO2 RR catalysts exhibiting high faradaic efficiencies towards CO at technological reaction rates.

14.
ACS Appl Mater Interfaces ; 10(37): 31355-31365, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30136836

RESUMO

In this work, we aim to develop a Zn-based metal foam catalyst with very large specific area suitable for efficient CO production. Its manufacture is based on the dynamic hydrogen bubble template method that consists of the superposition of metal deposition and hydrogen evolution at the solid-liquid interface. We employed Cu ions in the Zn2+-rich electroplating bath as foaming agent. The concentration of Cu as foaming agent was systematically studied and an optimized Zn94Cu6 foam alloy was developed, which, to the best of our knowledge, is the most selective Zn-based CO2 electrocatalyst toward CO in aqueous bicarbonate solution (FECO = 90% at -0.95 V vs reversible hydrogen electrode). This high efficiency is ascribed to the combination of high density of low-coordinated active sites and preferential Zn(101) over Zn(002) texturing. X-ray photoelectron spectroscopy investigations demonstrate that the actual catalyst material is shaped upon reduction of an oxide/hydroxide-terminating surface under CO2 electrolysis conditions. Moreover, intentional stressing by oxidation at room conditions proved to be beneficial for further activation of the catalyst. Identical location scanning electron microscopy imaging before and after CO2 electrolysis and long-term electrolysis experiments also showed that the developed Zn94Cu6 foam catalyst is both structurally and chemically stable at reductive conditions.

15.
Astrobiology ; 18(8): 1071-1080, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30095994

RESUMO

The recognition of biosignatures on planetary bodies requires the analysis of the putative microfossil with a set of complementary analytical techniques. This includes localized elemental and isotopic analysis of both, the putative microfossil and its surrounding host matrix. If the analysis can be performed with spatial resolution at the micrometer level and ppm detection sensitivities, valuable information on the (bio)chemical and physical processes that influenced the sample material can be gained. Our miniaturized laser ablation ionization mass spectrometry (LIMS)-time-of-flight mass spectrometer instrument is a valid candidate for performing the required chemical analysis in situ. However, up until now it was limited by the spatial accuracy of the sampling. In this contribution, we introduce a newly developed microscope system with micrometer accuracy for Ultra High Vacuum application, which allows a significant increase in the measurement capabilities of our miniature LIMS system. The new enhancement allows identification and efficient and accurate sampling of features of micrometer-sized fossils in a host matrix. The performance of our system is demonstrated by the identification and chemical analysis of signatures of micrometer-sized fossil structures in the 1.9 billion-year-old Gunflint chert.


Assuntos
Fósseis , Lasers , Espectrometria de Massas/instrumentação , Microscopia/instrumentação , Fenômenos Ópticos , Isótopos , Reprodutibilidade dos Testes , Vácuo
16.
Anal Chem ; 90(11): 6666-6674, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29722528

RESUMO

State-of-the-art three-dimensional very large-scale integration (3D-VLSI) relies, among other factors, on the purity of high-aspect-ratio Cu interconnects such as through-silicon-vias (TSVs). Accurate spatial chemical analysis of electroplated TSV structures has been proven to be challenging due to their large aspect ratios and their multimaterial composition (Cu and Si) with distinct physical properties. Here, we demonstrate that these structures can be accurately analyzed by femtosecond (fs) laser beam ablation techniques in combination with ionization mass spectrometry (LIMS). We specifically report on novel preparation approaches for the postablation analysis of craters formed upon TSV depth profiling. The novel TSV sample preparation is based on deep and material-selective reactive-ion etching of the Si matrix surrounding the Cu interconnects thus facilitating systematic focused-ion-beam (FIB) investigations of the high-aspect-ratio TSV structures upon ablation. The particular structure of the TSV analyte combined with the ⌀beam > ⌀Cu-TSV condition allowed for an in-depth investigation of fundamental laser ablation processes, particularly focusing on the redeposition of ablated material at the inner side-walls of the LIMS craters. This phenomenon is of imminent importance for the ultimate quantification in any laser ablation-based depth profiling. In addition, we have developed a new method which allows the unambiguous determination of the crossing-point of the Si/Cu||bare Si interface upon Cu-TSV depth profiling which is based on pronounced, depth-dependent changes in the mass-spectrometric detection of those Si xy+ species formed upon the LIMS depth erosion.

17.
Anal Chem ; 90(8): 5179-5186, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578694

RESUMO

Through-silicon-via (TSV) technology enables 3D integration of multiple 2D components in advanced microchip architectures. Key in the TSV fabrication is an additive-assisted Cu electroplating process in which the additives employed may get embedded in the TSV body. This incorporation negatively influences the reliability and durability of the Cu interconnects. Here, we present a novel approach toward the chemical analysis of TSVs which is based on femtosecond laser ablation ionization mass spectrometry (fs-LIMS). The conditions for LIMS depth profiling were identified by a systematic variation of the laser pulse energy and the number of laser shots applied. In this contribution, new aspects are addressed related to the analysis of highly heterogeneous specimens having dimensions in the range of the probing beam itself. Particularly challenging were the different chemical and physical properties of which the target specimens were composed. Depth profiling of the TSVs along their main axis (approach 1) revealed a gradient in the carbon (C) content. These differences in the C concentration inside the TSVs could be confirmed and quantified by LIMS analyses of cross-sectionally sliced TSVs (approach 2). Our quantitative analysis revealed a C content that is ∼1.5 times higher at the TSV top surface compared to its bottom. Complementary Scanning Auger Microscopy (SAM) data confirmed a preferential embedment of suppressor additives at the side walls of the TSV. These results demonstrate that the TSV filling concept significantly deviates from common Damascene electroplating processes and will therefore contribute to a more comprehensive, mechanistic understanding of the underlying mechanisms.

18.
Anal Chem ; 90(4): 2692-2700, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29400952

RESUMO

State-of-the-art laser ablation (LA) depth-profiling techniques (e.g. LA-ICP-MS, LIBS, and LIMS) allow for chemical composition analysis of solid materials with high spatial resolution at micro- and nanometer levels. Accurate determination of LA-volume is essential to correlate the recorded chemical information to the specific location inside the sample. In this contribution, we demonstrate two novel approaches towards a better quantitative analysis of LA craters with dimensions at micrometer level formed by femtosecond-LA processes on single-crystalline Si(100) and polycrystalline Cu model substrates. For our parametric crater evolution studies, both the number of applied laser shots and the pulse energy were systematically varied, thus yielding 2D matrices of LA craters which vary in depth, diameter, and crater volume. To access the 3D structure of LA craters formed on Si(100), we applied a combination of standard lithographic and deep reactive-ion etching (DRIE) techniques followed by a HR-SEM inspection of the previously formed crater cross sections. As DRIE is not applicable for other material classes such as metals, an alternative and more versatile preparation technique was developed and applied to the LA craters formed on the Cu substrate. After the initial LA treatment, the Cu surface was subjected to a polydimethylsiloxane (PDMS) casting process yielding a mold being a full 3D replica of the LA craters, which was then analyzed by HR-SEM. Both approaches revealed cone-like shaped craters with depths ranging between 1 and 70 µm and showed a larger ablation depth of Cu that exceed the one of Si by a factor of about 3.

19.
Anal Chem ; 89(3): 1632-1641, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28105805

RESUMO

Femtosecond laser ablation/ionization mass spectrometry (LIMS) has been applied to probe the spatial element composition of three ternary Cu-Sn-Pb model bronze alloys (lead bronzes: CuSn10Pb10, CuSn7Pb15, and CuSn5Pb20), which were recently identified as high-performance cathode materials in the context of electro-organic synthesis (dehalogenation, deoxygenation) of pharmaceutically relevant building blocks. The quantitative and spatially resolved element analysis of such cathode materials will help in understanding the observed profound differences in their electrochemical reactivity and stability. For that purpose, we developed a measurement procedure using the LIMS technique which allows analyzing the element composition of these ternary alloys in all three spatial dimensions. Their chemical composition was determined spotwise, by ablating material from various surface locations on a 4 × 4 raster array (50 µm pitch distance, ablation crater diameter of ∼20 µm). The element analyses show significant chemical inhomogeneities in all three ternary bronze alloys with profound local deviations from their nominal bulk compositions and indicate further differences in the nature and origin of these compositional inhomogeneities. In addition, the element analyses showed specific compositional correlations among the major elements (Cu, Sn, and Pb) in these alloys. On selected sample positions minor (Ni, Zn, Ag, and Sb) and trace elements (C, P, Fe, and As) were quantified. These results are in agreement with inductively coupled plasma collision/reaction interface mass spectrometry (ICP-CRI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reference measurements, thus proving the LIMS depth profiling technique as a powerful alternative methodology to conventional quantification techniques with the advantage, however, of a highly localized measurement capability.

20.
Chimia (Aarau) ; 70(4): 268-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27131112

RESUMO

Direct quantitative and sensitive chemical analysis of solid materials with high spatial resolution, both in lateral and vertical direction is of high importance in various fields of analytical research, ranging from in situ space research to the semiconductor industry. Accurate knowledge of the chemical composition of solid materials allows a better understanding of physical and chemical processes that formed/altered the material and allows e.g. to further improve these processes. So far, state-of-the-art techniques such as SIMS, LA-ICP-MS or GD-MS have been applied for chemical analyses in these fields of research. In this report we review the current measurement capability and the applicability of our Laser Ablation/Ionisation Mass Spectrometer (instrument name LMS) for the chemical analysis of solids with high spatial resolution. The most recent chemical analyses conducted on various solid materials, including e.g. alloys, fossils and meteorites are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...