Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Biomed Chromatogr ; 37(12): e5741, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688464

RESUMO

Matrix effect and sample pretreatment significantly affect the percentage recovery of peptides in biological matrices, affecting the method robustness and accuracy. To counteract this effect, an internal standard (IS) is used; however, in most cases this is not available, which limits the analytical method. It is important to identify short peptides that can be used as ISs in the quantification of peptides in biological matrices. In this study, doping peptides GHRP-4, GHRP-5, GHRP-6, Sermorelin (1-11), Sermorelin (13-20) and Sermorelin (22-29) were synthesized using solid-phase peptide synthesis. Treatment with human blood, trypsin and chymotrypsin was used to determine the stability of the peptides. Products were evaluated using the high-performance liquid chromatography-diode array detector (HPLC-DAD) method. The analytical methodology and sample pretreatment were effective for the analysis of these molecules. A unique profile related to protein binding and enzymatic stability of each peptide was established. GHRP-4, GHRP-6 and Sermorelin (22-29) can be considered as in-house ISs as they were stable to enzyme and blood treatment and can be used for the quantification of peptides in biological samples. Peptides GHRP-6 and Sermorelin (22-29) were used to analyse a dimeric peptide (26 [F] LfcinB (20-30)2 ) in four different matrices to test these peptides as in-house IS.


Assuntos
Testes de Química Clínica , Dopagem Esportivo , Hormônio Liberador de Hormônio do Crescimento , Substâncias de Crescimento , Peptídeos/análise , Humanos , Soro/química , Estabilidade Proteica , Análise Química do Sangue/normas , Testes de Química Clínica/normas , Hormônio Liberador de Hormônio do Crescimento/análise , Substâncias de Crescimento/análise
2.
J Fungi (Basel) ; 9(8)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37623588

RESUMO

The antifungal activity of palindromic peptide RWQWRWQWR and its derivatives was evaluated against clinical isolates of Candida albicans and C. auris. Also, Bidens pilosa ethanolic extracts of leaves and stem were evaluated. Furthermore, combinations of peptide, extract, and/or fluconazole (FLC) were evaluated. The cytotoxicity of peptides and extracts in erythrocytes and fibroblasts was determined. The original palindromic peptide, some derivative peptides, and the ethanolic extract of leaves of B. pilosa exhibited the highest activity in some of the strains evaluated. Synergy was obtained between the peptide and the FLC against C. auris 435. The combination of the extract and the original palindromic peptide against C. albicans SC5314, C. auris 435, and C. auris 537 decreased the minimal inhibitory concentrations (MICs) by a factor of between 4 and 16. These mixtures induced changes in cell morphology, such as deformations on the cell surface. The results suggest that the combination of RWQWRWQWR and B. pilosa extract is an alternative for enhancing antifungal activity and decreasing cytotoxicity and costs and should be considered to be a promising strategy for treating diseases caused by Candida spp.

3.
R Soc Open Sci ; 10(6): 221493, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325596

RESUMO

The dimeric peptide 26[F]: (RRWQWRFKKLG)2-K-Ahx has exhibited a potent cytotoxic effect against breast cancer cell lines, with position 26 (F) being the most relevant for anti-cancer activity. In this investigation, six analogues of the 26[F] peptide were synthesized in which the 26th position was replaced by non-natural hydrophobic amino acids, finding that some modifications increased the resistance to proteolytic degradation exerted by trypsin or pepsin. Additionally, these modifications increased the cytotoxic effect against breast cancer cells and generated cell death mediated by apoptosis pathways, activating caspases 8 and 9, and did not compromise the integrity of the cytoplasmic membrane. Finally, it was found that the modified peptides have a broad spectrum of action, since they also have a cytotoxic effect against the HeLa human cervical cancer cell line. Peptide 26[F] was inoculated in mice by ip administration and the lethal dose 50 (LD50) was between 70 and 140 mg kg-1. While for the 26[1-Nal]: (RRWQWR-1-Nal-KKLG)2-K-Ahx peptide, a dose-response test was performed, and the survival rate was 100%. These results suggested that these peptides are safe in this animal model and could be considered as promissory to develop a treatment against breast cancer.

4.
Antibiotics (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107135

RESUMO

Antimicrobial resistance (AMR) is one of the top ten threats to public health, as reported by the World Health Organization (WHO). One of the causes of the growing AMR problem is the lack of new therapies and/or treatment agents; consequently, many infectious diseases could become uncontrollable. The need to discover new antimicrobial agents that are alternatives to the existing ones and that allow mitigating this problem has increased, due to the rapid and global expansion of AMR. Within this context, both antimicrobial peptides (AMPs) and cyclic macromolecules, such as resorcinarenes, have been proposed as alternatives to combat AMR. Resorcinarenes present multiple copies of antibacterial compounds in their structure. These conjugate molecules have exhibited antifungal and antibacterial properties and have also been used in anti-inflammatory, antineoplastic, and cardiovascular therapies, as well as being useful in drug and gene delivery systems. In this study, it was proposed to obtain conjugates that contain four copies of AMP sequences over a resorcinarene core. Specifically, obtaining (peptide)4-resorcinarene conjugates derived from LfcinB (20-25): RRWQWR and BF (32-34): RLLR was explored. First, the synthesis routes that allowed obtaining: (a) alkynyl-resorcinarenes and (b) peptides functionalized with the azide group were established. These precursors were used to generate (c) (peptide)4-resorcinarene conjugates by azide-alkyne cycloaddition CuAAC, a kind of click chemistry. Finally, the conjugates' biological activity was evaluated: antimicrobial activity against reference strains and clinical isolates of bacteria and fungi, and the cytotoxic activity over erythrocytes, fibroblast, MCF-7, and HeLa cell lines. Our results allowed establishing a new synthetic route, based on click chemistry, for obtaining macromolecules derived from resorcinarenes functionalized with peptides. Moreover, it was possible to identify promising antimicrobial chimeric molecules that may lead to advances in the development of new therapeutic agents.

5.
ACS Omega ; 8(2): 2712-2722, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687035

RESUMO

Breast cancer is one of the main causes of premature death in women; current treatments have low selectivity, generating strong physical and psychological sequelae. The palindromic peptide R-1-R (RWQWRWQWR) has cytotoxic activity against different cell lines derived from cancer and selectivity against noncancerous cells. To determine if changes in the charge/length of this peptide increase its activity, six peptides were obtained by SPPS, three of them with addition of Arg at the N, C-terminal or both and three with deletion of Arg at the N, C-terminal or both. The cytotoxic and selective activities were evaluated against MCF-7, MDA-MB-231, and MCF-12 cell lines and fibroblast primary cell culture, evidencing that the RR-1-R peptide with the inclusion of Arg in the N-terminal end maintained selectivity and increased cytotoxicity against lines derived from breast cancer. The effect of this addition regarding the type of induced cell death was evaluated by flow cytometry, showing very low rates of necrosis and a significant majority of apoptotic events with activation of both Caspase 8 and Caspase 9. This work allowed us to find a modification that generates a peptide with greater cytotoxic effects and can be considered a promising molecule for other approaches to improve anticancer peptides.

6.
Antibiotics (Basel) ; 11(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551475

RESUMO

Cryptococcosis is associated with high rates of morbidity and mortality. The limited number of antifungal agents, their toxicity, and the difficulty of these molecules in crossing the blood-brain barrier have made the exploration of new therapeutic candidates against Cryptococcus neoformans a priority task. To optimize the antimicrobial functionality and improve the physicochemical properties of AMPs, chemical strategies include combinations of peptide fragments into one. This study aimed to evaluate the binding of the minimum activity motif of bovine lactoferricin (LfcinB) and buforin II (BFII) against C. neoformans var. grubii. The antifungal activity against these chimeras was evaluated against (i) the reference strain H99, (ii) three Colombian clinical strains, and (iii) eleven mutant strains, with the aim of evaluating the possible antifungal target. We found high activity against these strains, with a MIC between 6.25 and 12.5 µg/mL. Studies were carried out to evaluate the effect of the combination of fluconazole treatments, finding a synergistic effect. Finally, when fibroblast cells were treated with 12.5 µg/mL of the chimeras, a viability of more than 65% was found. The results obtained in this study identify these chimeras as potential antifungal molecules for future therapeutic applications against cryptococcosis.

7.
ACS Omega ; 7(49): 44817-44824, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530233

RESUMO

Using the van Deemter model, the efficiency of three stationary phase systems in the analysis of a mixture of synthetic peptides was evaluated: (i) monolithic, (ii) packed, and (iii) core-shell columns, and it was shown that the efficiency of the monolithic column is superior to the others, specifically using it, the lowest values of H min (0.03 and 0.1 mm) were obtained, and additionally its efficiency was not significantly affected by increasing the flow. Using the concept of the gradient retention factor (k*), a method for chromatographic separation of a peptide complex mixture was designed, implemented, and optimized and then transferred from a packed column to a monolithic one. The results showed that it was possible to separate all components of the mixture using both evaluated columns; moreover, the analysis time was reduced from 70 to 10 min, conserving the critical pair resolution (1.4), by the transfer method using the k* concept. The method developed was tested against a mixture of doping peptides, showing that this method is efficient for separating peptides of various natures. This investigation is very useful for the development of methods for the analysis of complex peptide mixtures since it provides a systematic approach that can be extrapolated to different types of columns and instrumentation.

8.
ACS Omega ; 7(43): 38193-38206, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340120

RESUMO

Peptides are very diverse molecules that can participate in a wide variety of biological processes. In this way, peptides are attractive for doping, since these molecules can activate or trigger biological processes that can improve the sports performance of athletes. Peptide molecules are found in the official World Anti-Doping Agency lists, mainly in sections S2, S4, and S5. In most cases, these molecules have a very short half-life in the body and/or are identical to natural molecules in the body, making it difficult to analyze them as performance-enhancing drugs. This article reviews the role of peptides in doping, with special emphasis on the peptides used as reference materials, the pretreatment of samples in biological matrices, the instrumentation, and the validation of analytical methodologies for the analysis of peptides used in doping. The growing need to characterize and quantify these molecules, especially in complex biological matrices, has generated the need to search for robust strategies that allow for obtaining sensitive and conclusive results. In this sense, strategies such as solid phase peptide synthesis (SPPS), seeking to obtain specific peptides, metabolites, or isotopically labeled analogs, is a key tool for adequate quantification of different peptide molecules in biological matrices. This, together with the use of optimal methodologies for sample pretreatment (e.g., SPE or protein precipitation), and for subsequent analysis by high-resolution techniques (mainly hyphenated LC-HRMS techniques), have become the preferred instrumentation to meet the analytical challenge involved in the analysis of peptides in complex matrices.

9.
Antibiotics (Basel) ; 11(11)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36358216

RESUMO

Antimicrobial peptides (AMPs) are considered to be a valuable source for the identification and/or design of promising candidates for the development of antifungal treatments, since they have advantages such as lower tendency to induce resistance, ease of production, and high purity and safety. Bovine lactoferricin (LfcinB) and buforin II (BFII) are AMPs to which great antimicrobial potential has been attributed. The minimum motives with antimicrobial activity derived from LfcinB and BFII are RRWQWR and RLLR, respectively. Nine chimeras containing the minimum motives of both peptides were synthesized and their antifungal activity against fluconazole (FLC)-sensitive and resistant C. albicans, C. glabrata, and C. auris strains was evaluated. The results showed that peptides C9: (RRWQWR)2K-Ahx-RLLRRRLLR and C6: KKWQWK-Ahx-RLLRRLLR exhibited the greatest antifungal activity against two strains of C. albicans, a FLC-sensitive reference strain and a FLC-resistant clinical isolate; no medically significant results were observed with the other chimeras evaluated (MIC ~200 µg/mL). The chimera C6 was also active against sensitive and resistant strains of C. glabrata and C. auris. The combination of branched polyvalent chimeras together with FLC showed a synergistic effect against C. albicans. In addition to exhibiting antifungal activity against reference strains and clinical isolates of Candida spp., they also showed antibacterial activity against both Gram-positive and Gram-negative bacteria, suggesting that these chimeras exhibit a broad antimicrobial spectrum and can be considered to be promising molecules for therapeutic applications.

10.
Anal Methods ; 13(36): 4038-4054, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34486583

RESUMO

Mycotoxins are secondary metabolites that are known to be toxic to humans and animals. On the other hand, some mycotoxins and their analogues possess antioxidant as well as antitumor properties, which could be relevant in the fields of pharmaceutical analysis and food research. Omics techniques are a group of analytical tools applied in the biological sciences in order to study genes (genomics), mRNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics). Omics have become a vital tool in the field of mycotoxins, especially contributing to the identification of biomarkers with potential use for the detection of mycotoxigenic species and the gathering of information about the biosynthetic pathways of mycotoxins in different environments. This approach has provided tools for the development of prevention strategies and control measures for different mycotoxins. Additionally, research has revealed important information about the impact of global warming and climate change on the prevalence of mycotoxin issues in society. In the context of foodomics, the aim is to apply omics techniques in order to ensure food safety. The objective of the present review is to determine the state of the art regarding the development of analytical techniques based on omics in the identification of biosynthetic pathways related to mycotoxin synthesis.


Assuntos
Vias Biossintéticas , Micotoxinas , Animais , Vias Biossintéticas/genética , Inocuidade dos Alimentos , Humanos , Metabolômica , Micotoxinas/análise , Proteômica
11.
Vitae (Medellín) ; 28(3)2021-08-11. Ilustraciones
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1363266

RESUMO

BACKGROUND: Biosensing techniques have been the subject of exponentially increasing interest due to their performance advantages such as high selectivity and sensitivity, easy operation, low cost, short analysis time, simple sample preparation, and real-time detection. Biosensors have been developed by integrating the unique specificity of biological reactions and the high sensitivity of physical sensors. Therefore, there has been a broad scope of applications for biosensing techniques, and nowadays, they are ubiquitous in different areas of environmental, healthcare, and food safety. Biosensors have been used for environmental studies, detecting and quantifying pollutants in water, air, and soil. Biosensors also showed great potential for developing analytical tools with countless applications in diagnosing, preventing, and treating diseases, mainly by detecting biomarkers. Biosensors as a medical device can identify nucleic acids, proteins, peptides, metabolites, etc.; these analytes may be biomarkers associated with the disease status. Bacterial food contamination is considered a worldwide public health issue; biosensor-based analytical techniques can identify the presence or absence of pathogenic agents in food. OBJECTIVES: The present review aims to establish state-of-the-art, comprising the recent advances in the use of nucleic acid-based biosensors and their novel application for the detection of nucleic acids. Emphasis will be given to the performance characteristics, advantages, and challenges. Additionally, food safety applications of nucleic acid-based biosensors will be discussed. METHODS: Recent research articles related to nucleic acid-based biosensors, biosensors for detecting nucleic acids, biosensors and food safety, and biosensors in environmental monitoring were reviewed. Also, biosensing platforms associated with the clinical diagnosis and food industry were included. RESULTS: It is possible to appreciate that multiple applications of nucleic acid-based biosensors have been reported in the diagnosis, prevention, and treatment of diseases, as well as to identify foodborne pathogenic bacteria. The use of PNA and aptamers opens the possibility of developing new biometric tools with better analytical properties. CONCLUSIONS: Biosensors could be considered the most important tool for preventing, treating, and monitoring diseases that significantly impact human health. The aptamers have advantages as biorecognition elements due to the structural conformation, hybridization capacity, robustness, stability, and lower costs. It is necessary to implement biosensors in situ to identify analytes with high selectivity and lower detection limits


ANTECEDENTES: Las técnicas de biodetección han sido objeto de un interés cada vez mayor debido a ventajas, tales como alta selectividad y sensibilidad, facilidad de manejo, bajo costo, tiempo de análisis corto, preparación sencilla de muestras y detección en tiempo real. Los biosensores se han desarrollado integrando la especificidad única de las reacciones biológicas y la alta sensibilidad de los sensores físicos. Por lo tanto, las técnicas de biodetección han tenido un amplio campo de aplicación y hoy en día son omnipresentes en diferentes áreas del medio ambiente, la salud y la seguridad alimentaria. Se han utilizado biosensores para estudios ambientales, detectando y cuantificando contaminantes en el agua, el aire y el suelo. Los biosensores también mostraron un gran potencial para desarrollar herramientas analíticas con innumerables aplicaciones en el diagnóstico, prevención y tratamiento de enfermedades, principalmente mediante la detección de biomarcadores. Los biosensores como dispositivo médico pueden utilizarse para identificar ácidos nucleicos, proteínas, péptidos, metabolitos, etc. Estos analitos pueden ser biomarcadores asociados al estado de la enfermedad. La contaminación bacteriana de los alimentos se considera un problema de salud pública mundial; se pueden utilizar técnicas analíticas basadas en biosensores para determinar la presencia o ausencia de agentes patógenos en los alimentos. OBJETIVOS: La presente revisión tiene por objeto establecer los últimos adelantos en la utilización de biosensores basados en ácidos nucleicos y su novedosa aplicación para la detección de ácidos nucleicos. Se hará hincapié en las características del desempeño, las ventajas y los desafíos. Además, se examinarán las aplicaciones de los biosensores basados en ácidos nucleicos para la inocuidad de los alimentos. MÉTODOS: Se examinaron artículos de investigación recientes relacionados con los biosensores a base de ácidos nucleicos, los biosensores para la detección de ácidos nucleicos, los biosensores y la inocuidad de los alimentos, y los biosensores para la vigilancia del medio ambiente. También se incluyeron plataformas de biosensores asociadas al diagnóstico clínico y a la industria alimentaria. RESULTADOS: Es posible apreciar que se han reportado múltiples aplicaciones de biosensores basados en ácido nucleico para el diagnóstico, prevención y tratamiento de enfermedades, así como para identificar bacterias patógenas transmitidas por los alimentos. El uso de PNA y aptámeros abre la posibilidad de desarrollar nuevas herramientas biométricas con mejores propiedades analíticas. CONCLUSIONES: Los biosensores pueden ser considerados como los instrumentos más importantes para la prevención, el tratamiento y la vigilancia de las enfermedades que tienen un impacto significativo en la salud humana. Los aptámeros tienen ventajas como elemento de biorreconocimiento debido a la conformación estructural, capacidad de hibridación, robustez, estabilidad y menores costos. Es necesario implementar biosensores in situ para identificar analitos con alta selectividad y menores límites de detección


Assuntos
Humanos , Técnicas Biossensoriais , Ácidos Nucleicos , Biomarcadores , Diagnóstico , Noxas
12.
RSC Adv ; 11(7): 4247-4255, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35424340

RESUMO

Metabolites have great potential for the design of biomarkers, since their presence or absence provides valuable information about a biological system. In this context, polyclonal antibodies are important metabolites for diagnostic procedures, but in some pathologies, it has been found that these metabolites are present at low concentrations, so it could be difficult to detect them. In this investigation, an organic monolithic material of poly(GMA-co-EDMA) was functionalized with a peptide via Michael addition (thiol-maleimide) click chemistry. The peptide, covalently bound to the monolith, contains the SPINNTKPHEAR sequence derived from the human papilloma virus L1 protein. It was determined that the obtained monolithic support allows selectively isolating polyclonal antibodies against the SPINNTKPHEAR sequence, since they are retained on the chemical surface of the material by an immunoaffinity interaction. The monolithic material functionalization protocol reported here could be applied to incorporate any peptide with a terminal cysteine in order to recover a specific analyte. A new method was developed for isolating and pre-concentrating antibodies using monolithic materials, which could contribute to the improvement of disease detection strategies based on immunoaffinity interactions.

13.
Chem Biodivers ; 18(2): e2000885, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33369144

RESUMO

Chimeric peptides containing short sequences derived from bovine Lactoferricin (LfcinB) and Buforin II (BFII) were synthetized using solid-phase peptide synthesis (SPPS) and characterized via reversed-phase liquid chromatography and mass spectrometry. The chimeras were obtained with high purity, demonstrating their synthetic viability. The chimeras' antibacterial activity against Gram-positive and Gram-negative strains was evaluated. Our results showed that all the chimeras exhibited greater antibacterial activity against the evaluated strains than the individual sequences, suggesting that chemical binding of short sequences derived from AMPs significantly increased the antibacterial activity. For each strain, the chimera with the best antibacterial activity exerted a bacteriostatic and/or bactericidal effect, which was dependent on the concentration. It was found that: (i) the antibacterial activity of a chimera is mainly influenced by the linked sequences, the palindromic motif RLLRRLLR being the most relevant one; (ii) the inclusion of a spacer between the short sequences did not significantly affect the chimera's synthesis process; however, it enhanced its antibacterial activity against Gram-negative and Gram-positive strains; on the other hand, (iii) the replacement of Arg with Lys in the LfcinB or BFII sequences improved the chimeras' synthesis process without significantly affecting their antibacterial activity. These results illustrate the great importance of the synthesis of chimeric peptides for the generation of promising antibacterial peptides.


Assuntos
Antibacterianos/química , Lactoferrina/química , Fragmentos de Peptídeos/química , Proteínas/química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Bovinos , Humanos , Lactoferrina/síntese química , Lactoferrina/farmacologia , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/farmacologia , Proteínas/síntese química , Proteínas/farmacologia , Técnicas de Síntese em Fase Sólida
14.
Int J Mol Sci ; 21(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604743

RESUMO

The effect on the cytotoxicity against breast cancer cell lines of the substitution of 26Met residue in the sequence of the Bovine Lactoferricin-derived dimeric peptide LfcinB (20-30)2: (20RRWQWRMKKLG30)2-K-Ahx with amino acids of different polarity was evaluated. The process of the synthesis of the LfcinB (20-30)2 analog peptides was similar to the original peptide. The cytotoxic assays showed that some analog peptides exhibited a significant cytotoxic effect against breast cancer cell lines HTB-132 and MCF-7, suggesting that the substitution of the Met with amino acids of a hydrophobic nature drastically enhances its cytotoxicity against HTB-132 and MCF-7 cells, reaching IC50 values up to 6 µM. In addition, these peptides have a selective effect, since they exhibit a lower cytotoxic effect on the non-tumorigenic cell line MCF-12. Interestingly, the cytotoxic effect is fast (90 min) and is maintained for up to 48 h. Additionally, through flow cytometry, it was found that the obtained dimeric peptides generate cell death through the apoptosis pathway and do not compromise the integrity of the cytoplasmic membrane, and there are intrinsic apoptotic events involved. These results show that the obtained peptides are extremely promising molecules for the future development of drugs for use against breast cancer.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/patologia , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Bovinos , Proliferação de Células , Feminino , Humanos , Células Tumorais Cultivadas
15.
RSC Adv ; 10(49): 29580-29586, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521126

RESUMO

Short peptides derived from buforin and lactoferricin B were conjugated with other antimicrobial molecules of different chemical natures. The sequences RLLR, RLLRLLR, RWQWRWQWR, and RRWQWR were conjugated at their N-terminal end with non-peptidic molecules such as 6-aminohexanoic acid, ferrocene, caffeic acid, ferulic acid, and oxolinic acid. Peptide conjugates and unmodified peptides were synthesized by means of solid-phase peptide synthesis using the Fmoc/tBu strategy (SPPS-Fmoc/tBu), purified via RP-SPE, and characterized via RP-HPLC and MS. The peptides' antibacterial activity against bacterial strains E. coli ATCC 25922 and S. aureus ATCC 25923 was evaluated, and the results showed that the peptide conjugates exhibited higher antibacterial activity than the original unconjugated peptides. Conjugation of AMPs is a promising strategy for designing and identifying new drugs for treating bacterial infections.

16.
Rev. colomb. quím. (Bogotá) ; 48(1): 16-25, ene.-jun. 2019. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1003848

RESUMO

Abstract Nicotinamide adenine dinucleotide phosphate (NADP) is an essential biomolecule that participates in the redox homeostasis and synthesis of signaling compounds. NAD kinase (NADK) (EC 2.7.1.23 / 2.7.1.86) is the only enzyme capable of synthesizing NADP. This study offers an approach to the NADP metabolism in the parasite Giardia intestinalis, the etiological agent of giardiasis, a disease of high prevalence in America, Asia and Africa. Through bioinformatics tools a NADK enzyme candidate was identified, whose tertiary structure modeling demonstrated distinctive and universal motifs of characterized NADKs. The corresponding recombinant protein (His-GINADK) was expressed in Escherichia coli BL21 (DE3) and its partial purification was achieved by nickel affinity chromatography. Functional identification, which showed NADP synthesis, was completed through enzymatic assays evaluated by RP-HPLC. A cytosolic localization of the endogenous GINADK enzyme was observed in trophozoites throughout indirect immunofluorescence analysis, using polyclonal antibodies produced in mice by its immunization with the His-GINADK protein, purified from inclusion bodies. Taken together, our results contribute to the understanding of the NADP metabolism and the physiological role of NADK in the Giardia model.


Resumen El dinucleótido de adenina y nicotinamida fosfato (NADP) es una biomolécula esencial que participa en la homeostasis redox y en la síntesis de compuestos de señalización. La única enzima capaz de sintetizar NADP es la NAD Quinasa (NADK, EC 2.7.1.23 / 2.7.1.86). En este estudio se presenta un acercamiento al metabolismo del NADP en el parásito Giardia intestinalis, agente etiológico de la giardiasis, una enfermedad de alta prevalencia en América, África y Asia. Mediante herramientas bioinformáticas se identificó un candidato a NADK, cuya predicción a nivel de estructura terciaria mostró motivos característicos y universales de NADKs previamente caracterizadas. La proteína recombinante correspondiente (His-GINADK) se expresó en Escherichia coli BL21 (DE3) y se purificó parcialmente mediante cromatografía de afinidad a níquel. La síntesis de NADP por parte de la proteína His-GINADK se comprobó mediante ensayos enzimáticos evaluados por RP-HPLC. Adicionalmente, se determinó una localización subcelular citosólica en trofozoítos del parásito, empleando inmunofluorescencia indirecta y anticuerpos policlonales producidos en modelos murinos inmunizados con la proteína His-GINADK purificada a partir de cuerpos de inclusión. Los resultados obtenidos representan un avance en el entendimiento del metabolismo del NADP y de la importancia fisiológica de la NADK en el modelo de Giardia.


Resumo A nicotinamida adenina dinucleótido fosfato (NADP) é uma biomolécula essencial que participa na homeostase redox e na síntese de importantes compostos de sinalização. A NAD quinase (NADK) (EC 2.7.1.23 / 2.7.1.86) é a única enzima capaz de sintetizar o NADP. Este estudo apresenta uma abordagem do metabolismo do NADP no parasita Giardia intestinalis que causa giardíase, uma doença de alta prevalência na América, Ásia e África. Através de ferramentas de bioinformática, um candidato a enzima NADK foi identificado no parasita, cuja modelagem de estrutura terciária, demonstra motivos distintos e universais de NADKs caracterizadas. A correspondente proteína recombinante (His-GINADK) foi expressa em Escherichia coli BL21 (DE3) e a sua purificação parcial foi conseguida por cromatografia de afinidade com níquel. A identificação funcional, que mostrou a síntese de NADP, foi completada através de ensaios enzimáticos avaliados por RP-HPLC. Uma localização citosólica da enzima GINADK endógena foi observada em trofozoítos ao longo da análise de imunofluorescência indireta, utilizando anticorpos policlonais produzidos em camundongos, imunizados com a proteína His-GINADK purificada de corpos de inclusão. Em conjunto, nossos resultados contribuem para a compreensão do metabolismo do NADP e da importância fisiológica do NADK no modelo de Giardia.

17.
Molecules ; 24(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925720

RESUMO

A methodology was implemented for purifying peptides in one chromatographic run via solid-phase extraction (SPE), reverse phase mode (RP), and gradient elution, obtaining high-purity products with good yields. Crude peptides were analyzed by reverse phase high performance liquid chromatography and a new mathematical model based on its retention time was developed in order to predict the percentage of organic modifier in which the peptide will elute in RP-SPE. This information was used for designing the elution program of each molecule. It was possible to purify peptides with different physicochemical properties, showing that this method is versatile and requires low solvent consumption, making it the least polluting one. Reverse phase-SPE can easily be routinely implemented. It is an alternative to enrich and purified synthetic or natural molecules.


Assuntos
Peptídeos/isolamento & purificação , Extração em Fase Sólida/economia , Extração em Fase Sólida/métodos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Peptídeos/química
18.
RSC Adv ; 9(35): 20432-20438, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35514725

RESUMO

Electrospinning technology is useful for making ultrafine drug-eluting fibers for the clinical treatment of wounds. We show the incorporation of an antimicrobial LfcinB-derived peptide into Pullulan nanofibers. The palindromic peptide LfcinB (21-25)Pal: RWQWRWQWR was synthesized, purified, and characterized by means of the RP-HPLC and MALDI-TOF MS methods. The peptide's antibacterial activity against the E. coli ATCC 25922 strain was evaluated, and the peptide LfcinB (20-25)Pal exhibited significant antibacterial activity. Nanofibers were obtained by electrospinning a Pullulan or Pullulan-LfcinB (21-25)Pal solution. The obtained nanofibers were characterized via microscopy (AFM and SEM) and RP-HPLC chromatography. The peptide incorporation efficiency was 31%. The Pullulan-LfcinB (21-25)Pal nanofibers were soluble in water, and the peptide was liberated immediately. The Pullulan-LfcinB (21-25)Pal nanofibers exhibited the same antibacterial activity against E. coli strain as the free peptide LfcinB (21-25)Pal. The results suggest that Pullulan-LfcinB (21-25)Pal nanofibers could be considered for designing and developing antibacterial wound dressings.

19.
RSC Adv ; 9(36): 20497-20504, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35515557

RESUMO

The cytotoxic effect of the tetrameric peptide LfcinB (20-25)4 against breast cancer cell line ATCC® HTB-22™ (MCF-7) was evaluated. The tetrameric peptide exhibited a concentration-dependent cytotoxic effect against MCF-7 cancer cells. The peptide at 22 µM had the maximum cytotoxic effect against MCF-7 cancer cells, reducing their cell viability to ∼20%. The cytotoxic effect of the tetrameric peptide against MCF-7 cells was sustained for 24 hours. Furthermore, the tetrameric peptide did not exhibit a significant cytotoxic effect against the non-tumorogenic trophoblastic cell line, which confirms their selectivity for breast cancer cell lines. The MCF-7 cells treated at 12.2 µM for 1 h exhibited morphological changes characteristic of apoptosis, such as rounded forms and cellular shrinkage. Furthermore, this peptide induces severe cellular damage to MCF-7 cells, mitochondrial membrane depolarization, and increase of cytoplasmic calcium concentration. Our results suggest that it has a significant selective cytotoxic effect against MCF-7 cells, which may be mainly associated with the apoptotic pathway. This peptide, which contains the RRWQWR motif, could be considered to be a promising candidate for developing therapeutic agents for the treatment of breast cancer.

20.
RSC Adv ; 9(13): 7239-7245, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519960

RESUMO

Dimeric and tetrameric peptides derived from LfcinB (20-25): RRWQWR, LfcinB (20-30): RRWQWRMKKLG, LfcinB (17-31): FKARRWQWRMKKLGA, or the palindromic sequence LfcinB (21-25)Pal: RWQWRWQWR were obtained by means of the SPPS-Fmoc/tBu methodology. The antibacterial activity of these molecules was evaluated against Escherichia coli (ATCC 25922 and ATCC 11775), Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), and Pseudomonas aeruginosa (ATCC 27853). The dimer LfcinB (20-25)2: (RRWQWR)2K-Ahx, the tetramer LfcinB (20-25)4: (RRWQWR)4K2-Ahx2-C2, and the palindromic sequence LfcinB (21-25)Pal exhibited the highest antibacterial activity against the tested bacterial strains. In all cases, the antibacterial activity was dependent on peptide concentration. The polyvalent molecules LfcinB (20-25)2 and LfcinB (20-25)4 exhibited bacteriostatic and bactericidal activity against E. coli, P. aeruginosa, and S. aureus strains; additionally, this dimer and this tetramer combined with ciprofloxacin exhibited a synergistic antibacterial effect against E. coli ATCC 25922 and P. aeruginosa, respectively. Furthermore, the peptides LfcinB (20-30)4, LfcinB (20-25)4, and LfcinB (21-25)Pal combined with vancomycin exhibited a synergistic antibacterial effect against S. aureus and E. faecalis, respectively. This study showed that polyvalent peptides derived from LfcinB exhibit significant antibacterial activity, suggesting that these peptides could have a therapeutic application. Furthermore, our results suggest that polyvalent peptide synthesis could be considered as an innovative and viable strategy for obtaining promising antimicrobial molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...