Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
Appl Opt ; 62(7): B73-B78, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132888

RESUMO

This work presents the characterization of the optical and mechanical properties of thin films based on (T a 2 O 5)1-x (S i O 2)x mixed oxides deposited by microwave plasma assisted co-sputtering, including post-annealing treatments. The deposition of low mechanical loss materials (3×10-5) with a high refractive index (1.93) while maintaining low processing costs was achieved and the following trends were demonstrated: The energy band gap increased as the S i O 2 concentration was increased in the mixture, and the disorder constant decreased when the annealing temperatures increased. Annealing of the mixtures also showed positive effects to reduce the mechanical losses and the optical absorption. This demonstrates their potential as an alternative high-index material for optical coatings in gravitational wave detectors using a low-cost process.

2.
Nanotechnology ; 31(22): 225604, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32187022

RESUMO

Mechanical manipulation of nanowires (NWs) for their integration in electronics is still problematic because of their reduced dimensions, risking to produce mechanical damage to the NW structure and electronic properties during the assembly process. In this regard, contactless NW manipulation based methods using non-uniform electric fields, like dielectrophoresis (DEP) are usually much softer than mechanical methods, offering a less destructive alternative for integrating nanostructures in electronic devices. Here, we report a feasible and reproducible dielectrophoretic method to assemble single GaAs NWs (with radius 35-50 nm, and lengths 3-5 µm) on conductive electrodes layout with assembly yields above 90% per site, and alignment yields of 95%. The electrical characteristics of the dielectrophoretic contact formed between a GaAs NW and conductive electrodes have been measured, observing Schottky barrier like contacts. Our results also show the fast fabrication of diodes with rectifying characteristics due to the formation of a low-resistance contact between the Ga catalytic droplet at the tip of the NW when using Al doped ZnO as electrode. The current-voltage characteristics of a single Ga-terminated GaAs NW measured in dark and under illumination exhibit a strong sensitivity to visible light under forward bias conditions (around two orders of magnitude), mainly produced by a change on the series resistance of the device.

3.
Nano Lett ; 18(6): 3608-3615, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29739187

RESUMO

The successful synthesis of high crystalline quality and high aspect ratio GaAs nanowires (NWs) with a uniform diameter is needed to develop advanced applications beyond the limits established by thin film and bulk material properties. Vertically aligned GaAs NWs have been extensively grown by Ga-assisted vapor-liquid-solid (VLS) mechanism on Si(111) substrates, and they have been used as building blocks in photovoltaics, optoelectronics, electronics, and so forth. However, the nucleation of parasitic species such as traces and nanocrystals on the Si substrate surface during the NW growth could affect significantly the controlled nucleation of those NWs, and therefore the resulting performance of NW-based devices. Preventing the nucleation of parasitic species on the Si substrate is a matter of interest, because they could act as traps for gaseous precursors and/or chemical elements during VLS growth, drastically reducing the maximum length of grown NWs, affecting their morphology and structure, and reducing the NW density along the Si substrate surface. This work presents a novel and easy to develop growth method (i.e., without using advanced nanolithography techniques) to prevent the nucleation of parasitic species, while preserving the quality of GaAs NWs even for long duration growths. GaAs NWs are grown by Ga-assisted chemical beam epitaxy on oxidized Si(111) substrates using triethylgallium and tertiarybutylarsine precursors by a two-step-based growth method presented here; this method includes a growth interruption for an oxidation on air between both steps of growth, reducing the nucleation of parasitic crystals on the thicker SiO x capping layer during the second and longer growth step. VLS conditions are preserved overtime, resulting in a stable NW growth rate of around 6 µm/h for growth times up to 1 h. Resulting GaAs NWs have a high aspect ratio of 85 and average radius of 35 nm. We also report on the existence of characteristic reflection high-energy electron diffraction patterns associated with the epitaxial growth of GaAs NWs on Si(111) substrates, which have been analyzed and compared to the morphological characterization of GaAs NWs grown for different times under different conditions.

4.
Microsyst Nanoeng ; 4: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31057910

RESUMO

In this work, we have developed a contact-printing system to efficiently transfer the bottom-up and top-down semiconductor nanowires (NWs), preserving their as-grown features with a good control over their electronic properties. In the close-loop configuration, the printing system is controlled with parameters such as contact pressure and sliding speed/stroke. Combined with the dry pre-treatment of the receiver substrate, the system prints electronic layers with high NW density (7 NWs/µm for bottom-up ZnO and 3 NWs/µm for top-down Si NWs), NW transfer yield and reproducibility. We observed compactly packed (~115 nm average diameters of NWs, with NW-to-NW spacing ~165 nm) and well-aligned NWs (90% with respect to the printing direction). We have theoretically and experimentally analysed the role of contact force on NW print dynamics to investigate the heterogeneous integration of ZnO and Si NWs over pre-selected areas. Moreover, the contact-printing system was used to fabricate ZnO and Si NW-based ultraviolet (UV) photodetectors (PDs) with Wheatstone bridge (WB) configuration on rigid and flexible substrates. The UV PDs based on the printed ensemble of NWs demonstrate high efficiency, a high photocurrent to dark current ratio (>104) and reduced thermal variations as a result of inherent self-compensation of WB arrangement. Due to statistically lesser dimensional variations in the ensemble of NWs, the UV PDs made from them have exhibited uniform response.

5.
Funct Plant Biol ; 45(9): 968-982, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32291060

RESUMO

To study the acclimation responses of the leaves of saplings of six tree species when changed to low or high levels of irradiance, we carried out a light exposure experiment. Species representative of contrasting shade tolerance groups were identified across a light gradient in the understorey of a Venezuelan Andean cloud forest. Measured traits included gas exchange, chlorophyll fluorescence, and morphoanatomical, biochemical and optical properties. Saplings were grown for 6 months in a shade-house receiving 20% photosynthetic photon flux (PPF) of full sunlight. Plant samples were then moved to shade-houses receiving low PPF (4%) or high PPF (65%). A factorial model (species×PPF), with repeated measurements (0, 15 and 120 days) was designed. Our results showed that morphological and anatomical traits were more plastic to PPF changes than photosynthetic traits. All species were susceptible to photoinhibition (15 days): shade-intolerant species showed dynamic photoinhibition (120 days), whereas shade-tolerant species presented chronic photoinhibition and the consequent inability to increase C assimilation rates under high PPF. The partially shade-tolerant species showed mixed responses; nonetheless, they exhibited larger adjustments in morphoanatomical and optical properties. Thus the acclimation responses of these species when subject to contrasting light conditions could help to explain their distribution along the light gradient in the understorey.

6.
ACS Appl Mater Interfaces ; 10(3): 3058-3068, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29280379

RESUMO

This work reports a temperature-assisted dip-coating method for self-assembly of silica (SiO2) microspheres/nanospheres (SPs) as monolayers over large areas (∼cm2). The area over which self-assembled monolayers (SAMs) are formed can be controlled by tuning the suspension temperature (Ts), which allows precise control over the meniscus shape. Furthermore, the formation of periodic stripes of SAMs, with excellent dimensional control (stripe width and stripe-to-stripe spacing), is demonstrated using a suitable set of dip-coating parameters. These findings establish the role of Ts, and other parameters such as withdrawal speed (Vw), withdrawal angle (θw), and withdrawal step length (Lw). For Ts ranged between 25 and 80 °C, the morphological analysis of dip-coatings shows layered structures comprising of defective layers (25-60 °C), single layers (70 °C), and multilayers (>70 °C) owing to the variation of SP flux at the meniscus/substrate assembling interface. At Ts = 70 °C, there is an optimum Vw, approximately equal to the downshift speed of the meniscus (Vm = 1.3 µm/s), which allows the SAM formation over areas (2.25 cm2) roughly 10 times larger than reported in the literature using nanospheres. Finally, the large-area SAM is used to demonstrate the enhanced performance of antireflective coatings for photovoltaic cells and to create metal nanomesh for Si nanowire synthesis.

7.
Front Neurosci ; 11: 501, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979183

RESUMO

This paper presents novel Neural Nanowire Field Effect Transistors (υ-NWFETs) based hardware-implementable neural network (HNN) approach for tactile data processing in electronic skin (e-skin). The viability of Si nanowires (NWs) as the active material for υ-NWFETs in HNN is explored through modeling and demonstrated by fabricating the first device. Using υ-NWFETs to realize HNNs is an interesting approach as by printing NWs on large area flexible substrates it will be possible to develop a bendable tactile skin with distributed neural elements (for local data processing, as in biological skin) in the backplane. The modeling and simulation of υ-NWFET based devices show that the overlapping areas between individual gates and the floating gate determines the initial synaptic weights of the neural network - thus validating the working of υ-NWFETs as the building block for HNN. The simulation has been further extended to υ-NWFET based circuits and neuronal computation system and this has been validated by interfacing it with a transparent tactile skin prototype (comprising of 6 × 6 ITO based capacitive tactile sensors array) integrated on the palm of a 3D printed robotic hand. In this regard, a tactile data coding system is presented to detect touch gesture and the direction of touch. Following these simulation studies, a four-gated υ-NWFET is fabricated with Pt/Ti metal stack for gates, source and drain, Ni floating gate, and Al2O3 high-k dielectric layer. The current-voltage characteristics of fabricated υ-NWFET devices confirm the dependence of turn-off voltages on the (synaptic) weight of each gate. The presented υ-NWFET approach is promising for a neuro-robotic tactile sensory system with distributed computing as well as numerous futuristic applications such as prosthetics, and electroceuticals.

8.
Interciencia ; 32(10): 633-688, oct. 2007. tab, graf
Artigo em Inglês | LILACS | ID: lil-493261

RESUMO

Polylepis es un género restringido a la Cordillera de los Andes, encontrándose de forma natural por encima del límite superior de bosque continuo. El propósito de este trabajo fue integrar y comparar las características funcionales, en términos de relaciones hídricas y de carbono y mecanismos de resistencia a bajas temperaturas, en diferentes especies de Polylepis a lo largo de un gradiente latitudinal. Las especies estudiadas fueron P. sericea en Venezuela, P. tarapacana en Bolivia y P. australis en Argentina. Se compararon medidas estacionales de potencial hídrico y osmótico foliares, conductancia estomática, asimilación de CO2 y respiración, y temperatura de congelamiento y daño. Se evidencia un gradiente de atributos funcionales a lo largo del rango ambiental. P. tarapacana es la especie más resistente al estrés hídrico, mientras que P. sericea evade condiciones menos severas de su habitat a través de ajuste osmótico y cambios en la elasticidad de las paredes celulares. Las tasas promedios de asimilación de CO2 fueron mayores en P. australis (9mmol·m-2·s-1) que en P. sericea (5mmol·m-2·s-1) y P. tarapacana (3mmol·m-2·s-1). La tasa promedio de respiración foliar nocturna fue similar para todas las especies (1-2mmol·m-2·s-1). En términos de resistencia a bajas temperaturas, P. sericea muestra ajuste osmótico diario y capacidad moderada de sobreenfriamiento (-9ºC). Las otras dos especies dependen de la tolerancia al congelamiento para soportar las temperaturas bajas más extremas. Los atributos funcionales descritos para las diferentes especies en un amplio rango ambiental pueden explicar algunos aspectos de su éxito en los gradientes latitudinales y altitudinales.


Assuntos
Geografia , Biologia , América Latina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...