Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604812

RESUMO

BACKGROUND: Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies in the Western world. Contributing factors include a high frequency of late-stage diagnosis, the development of chemoresistance, and the evasion of host immune responses. Currently, debulking surgery and platinum-based chemotherapy are the treatment cornerstones, although recurrence is common. As the clinical efficacy of immune checkpoint blockade is low, new immunotherapeutic strategies are needed. Chimeric antigen receptor (CAR) T cell therapy empowers patients' own T cells to fight and eradicate cancer, and has been tested against various targets in OC. A promising candidate is the MUC16 ectodomain. This ectodomain remains on the cell surface after cleavage of cancer antigen 125 (CA125), the domain distal from the membrane, which is currently used as a serum biomarker for OC. CA125 itself has not been tested as a possible CAR target. In this study, we examined the suitability of the CA125 as a target for CAR T cell therapy. METHODS: We tested a series of antibodies raised against the CA125 extracellular repeat domain of MUC16 and adapted them to the CAR format. Comparisons between these candidates, and against an existing CAR targeting the MUC16 ectodomain, identified K101 as having high potency and specificity. The K101CAR was subjected to further biochemical and functional tests, including examination of the effect of soluble CA125 on its activity. Finally, we used cell lines and advanced orthotopic patient-derived xenograft (PDX) models to validate, in vivo, the efficiency of our K101CAR construct. RESULTS: We observed a high efficacy of K101CAR T cells against cell lines and patient-derived tumors, in vitro and in vivo. We also demonstrated that K101CAR functionality was not impaired by the soluble antigen. Finally, in direct comparisons, K101CAR, which targets the CA125 extracellular repeat domains, was shown to have similar efficacy to the previously validated 4H11CAR, which targets the MUC16 ectodomain. CONCLUSIONS: Our in vitro and in vivo results, including PDX studies, demonstrate that the CA125 domain of MUC16 represents an excellent target for treating MUC16-positive malignancies.


Assuntos
Antígeno Ca-125 , Proteínas de Membrana , Feminino , Humanos , Antígeno Ca-125/metabolismo , Neoplasias Ovarianas/tratamento farmacológico
2.
Mol Imaging Biol ; 25(1): 144-155, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34888759

RESUMO

PURPOSE: Fluorescence imaging (FLI) using targeted near-infrared (NIR) conjugates aids the detection of tumour lesions pre- and intraoperatively. The optimisation of tumour visualisation and contrast is essential and can be achieved through high tumour-specificity and low background signal. However, the choice of fluorophore is recognised to alter biodistribution and clearance of conjugates and is therefore a determining factor in the specificity of target binding. Although ZW800-1, IRDye® 800CW and ICG are the most commonly employed NIR fluorophores in clinical settings, the fluorophore with optimal in vivo characteristics has yet to be determined. Therefore, we aimed to characterise the impact the choice of fluorophore has on the biodistribution, specificity and contrast, by comparing five different NIR fluorophores conjugated to folate, in an ovarian cancer model. PROCEDURES: ZW800-1, ZW800-1 Forte, IRDye® 800CW, ICG-OSu and an in-house synthesised Cy7 derivative were conjugated to folate through an ethylenediamine linker resulting in conjugates 1-5, respectively. The optical properties of all conjugates were determined by spectroscopy, the specificity was assessed in vitro by flow cytometry and FLI, and the biodistribution was studied in vivo and ex vivo in a subcutaneous Skov-3 ovarian cancer model. RESULTS: We demonstrated time- and receptor-dependent binding of folate conjugates in vitro and in vivo. Healthy tissue clearance characteristics and tumour-specific signal varied between conjugates 1-5. ZW800-1 Forte (2) revealed the highest contrast in folate receptor alpha (FRα)-positive xenografts and showed statistically significant target specificity. While conjugates 1, 2 and 3 are renally cleared, hepatobiliary excretion and no or very low accumulation in tumours was observed for 4 and 5. CONCLUSIONS: The choice of fluorophore has a significant impact on the biodistribution and tumour contrast. ZW800-1 Forte (2) exhibited the best properties of those tested, with significant specific fluorescence signal.


Assuntos
Ácido Fólico , Neoplasias Ovarianas , Humanos , Feminino , Distribuição Tecidual , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Corantes Fluorescentes/química
3.
Theranostics ; 11(12): 6044-6057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897898

RESUMO

Nitroreductases (NTR) are a family of bacterial enzymes used in gene directed enzyme prodrug therapy (GDEPT) that selectively activate prodrugs containing aromatic nitro groups to exert cytotoxic effects following gene transduction in tumours. The clinical development of NTR-based GDEPT has, in part, been hampered by the lack of translational imaging modalities to assess gene transduction and drug cytotoxicity, non-invasively. This study presents translational preclinical PET imaging to validate and report NTR activity using the clinically approved radiotracer, 18F-FMISO, as substrate for the NTR enzyme. Methods: The efficacy with which 18F-FMISO could be used to report NfsB NTR activity in vivo was investigated using the MDA-MB-231 mammary carcinoma xenograft model. For validation, subcutaneous xenografts of cells constitutively expressing NTR were imaged using 18F-FMISO PET/CT and fluorescence imaging with CytoCy5S, a validated fluorescent NTR substrate. Further, examination of the non-invasive functionality of 18F-FMISO PET/CT in reporting NfsB NTR activity in vivo was assessed in metastatic orthotopic NfsB NTR expressing xenografts and metastasis confirmed by bioluminescence imaging. 18F-FMISO biodistribution was acquired ex vivo by an automatic gamma counter measuring radiotracer retention to confirm in vivo results. To assess the functional imaging of NTR-based GDEPT with 18F-FMISO, PET/CT was performed to assess both gene transduction and cytotoxicity effects of prodrug therapy (CB1954) in subcutaneous models. Results:18F-FMISO retention was detected in NTR+ subcutaneous xenografts, displaying significantly higher PET contrast than NTR- xenografts (p < 0.0001). Substantial 18F-FMISO retention was evident in metastases of orthotopic xenografts (p < 0.05). Accordingly, higher 18F-FMISO biodistribution was prevalent ex vivo in NTR+ xenografts. 18F-FMISO NfsB NTR PET/CT imaging proved useful for monitoring in vivo NTR transduction and the cytotoxic effect of prodrug therapy. Conclusions:18F-FMISO NfsB NTR PET/CT imaging offered significant contrast between NTR+ and NTR- tumours and effective resolution of metastatic progression. Furthermore, 18F-FMISO NfsB NTR PET/CT imaging proved efficient in monitoring the two steps of GDEPT, in vivo NfsB NTR transduction and response to CB1954 prodrug therapy. These results support the repurposing of 18F-FMISO as a readily implementable PET imaging probe to be employed as companion diagnostic test for NTR-based GDEPT systems.


Assuntos
Misonidazol/análogos & derivados , Nitrorredutases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Pró-Fármacos/farmacologia , Animais , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Testes Diagnósticos de Rotina/métodos , Reposicionamento de Medicamentos/métodos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Misonidazol/metabolismo , Distribuição Tecidual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...