Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830274

RESUMO

Visceral leishmaniasis (VL), a vector-borne parasitic disease caused by Leishmania donovani and L. infantum (Kinetoplastida), affects humans and dogs, being fatal unless treated. Miltefosine (MIL) is the only oral medication for VL and is considered a first choice drug when resistance to antimonials is present. Comorbidity and comedication are common in many affected patients but the relationship between microbiome composition, drugs administered and their pharmacology is still unknown. To explore the effect of clindamycin on the intestinal microbiome and the availability and distribution of MIL in target organs, Syrian hamsters (120-140 g) were inoculated with L. infantum (108 promastigotes/animal). Infection was maintained for 16 weeks, and the animals were treated with MIL (7 days, 5 mg/kg/day), clindamycin (1 mg/kg, single dose) + MIL (7 days, 5 mg/kg/day) or kept untreated. Infection was monitored by ELISA and fecal samples (16 wpi, 18 wpi, end point) were analyzed to determine the 16S metagenomic composition (OTUs) of the microbiome. MIL levels were determined by LC-MS/MS in plasma (24 h after the last treatment; end point) and target organs (spleen, liver) (end point). MIL did not significantly affect the composition of intestinal microbiome, but clindamycin provoked a transient albeit significant modification of the relative abundance of 45% of the genera, including Ruminococcaceae UCG-014, Ruminococcus 2; Bacteroides and (Eubacterium) ruminantium group, besides its effect on less abundant phyla and families. Intestinal dysbiosis in the antibiotic-treated animals was associated with significantly lower levels of MIL in plasma, though not in target organs at the end of the experiment. No clear relationship between microbiome composition (OTUs) and pharmacological parameters was found.

2.
Parasit Vectors ; 15(1): 468, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522762

RESUMO

BACKGROUND: Visceral leishmaniasis (VL) is the most severe form of all leishmanial infections and is caused by infection with protozoa of Leishmania donovani and Leishmania infantum. This parasitic disease occurs in over 80 countries and its geographic distribution is on the rise. Although the interaction between the intestinal microbiome and the immune response has been established in several pathologies, it has not been widely studied in leishmaniasis. The Syrian hamster is the most advanced laboratory model for developing vaccines and new drugs against VL. In the study reported here, we explored the relationship between the intestinal microbiome and infection with L. infantum in this surrogate host. METHODS: Male Syrian hamsters (120-140 g) were inoculated with 108 promastigotes of a canine-derived L. infantum strain or left as uninfected control animals. Infection was maintained for 19 weeks (endpoint) and monitored by an immunoglobulin G (IgG) enyzme-linked immunosorbent assay throughout the experiment. Individual faecal samples, obtained at weeks 16, 18 and 19 post-inoculation, were analysed to determine the 16S metagenomic composition (the operational taxonomic units [OTUs] of the intestinal microbiome and the comparison between groups were FDR (false discovery rate)-adjusted). RESULTS: Leishmania infantum infection elicited moderate clinical signs and lesions and a steady increase in specific anti-Leishmania serum IgG. The predominant phyla (Firmicutes + Bacteriodetes: > 90%), families (Muribaculaceae + Lachnospiraceae + Ruminococcaceae: 70-80%) and genera found in the uninfected hamsters showed no significant variations throughout the experiment. Leishmania infantum infection provoked a slightly higher-albeit non-significant-value for the Firmicutes/Bacteriodetes ratio but no notable differences were found in the relative abundance or diversity of phyla and families. The microbiome of the infected hamsters was enriched in CAG-352, whereas Lachnospiraceae UCG-004, the [Eubacterium] ventriosum group and Allobaculum were less abundant. CONCLUSIONS: The lack of extensive significant differences between hamsters infected and uninfected with L. infantum in the higher taxa (phyla, families) and the scarce variation found, which was restricted to genera with a low relative abundance, suggest that there is no clear VL infection-intestinal microbiome axis in hamsters. Further studies are needed (chronic infections, co-abundance analyses, intestinal sampling, functional analysis) to confirm these findings and to determine more precisely the possible relationship between microbiome composition and VL infection.


Assuntos
Microbioma Gastrointestinal , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Cricetinae , Cães , Masculino , Animais , Mesocricetus , Leishmaniose Visceral/parasitologia , Leishmaniose/parasitologia , Imunoglobulina G
3.
Front Vet Sci ; 8: 779341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901253

RESUMO

In this study, we describe SARS-CoV-2 infection dynamics in one cat and three dogs from households with confirmed human cases of COVID-19 living in the Madrid Community (Spain) at the time of expansion (December 2020 through June 2021) of the alpha variant (lineage B.1.1.7). A thorough physical exam and nasopharyngeal, oropharyngeal, and rectal swabs were collected for real-time reverse-transcription PCR (RT-qPCR) SARS-CoV-2 testing on day 0 and in successive samplings on days 7, 14, 21, and 47 during monitoring. Blood was also drawn to determine complete blood counts, biochemical profiles, and serology of the IgG response against SARS-CoV-2. On day 0, the cat case 1 presented with dyspnea and fever associated with a mild bronchoalveolar pattern. The dog cases 2, 3, and 4 were healthy, but case 2 presented with coughing, dyspnea, and weakness, and case 4 exhibited coughing and bilateral nasal discharge 3 and 6 days before the clinical exam. Case 3 (from the same household as case 2) remained asymptomatic. SARS-CoV-2 detection by RT-qPCR showed that the cat case 1 and the dog case 2 exhibited the lowest cycle threshold (Ct) (Ct < 30) when they presented clinical signs. Viral detection failed in successive samplings. Serological analyses revealed a positive IgG response in cat case 1 and dog cases 3 and 4 shortly after or simultaneously to virus shedding. Dog case 2 was seronegative, but seroconverted 21 days after SARS-CoV-2 detection. SARS-CoV-2 genome sequencing was attempted, and genomes were classified as belonging to the B.1.1.7 lineage.

4.
Chemosphere ; 254: 126909, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957299

RESUMO

Soil contamination by heavy metals (HMs) is an environmental problem, and nanoremediation by using zero-valent iron nanoparticles (nZVI) has attracted increasing interest. We used ecotoxicological test and global transcriptome analysis with DNA microarrays to assess the suitability of C. elegans as a useful bioindicator to evaluate such strategy of nanoremediation in a highly polluted soil with Pb, Cd and Zn. The HMs produced devastating effect on C. elegans. nZVI treatment reversed this deleterious effect up to day 30 after application, but the reduction in the relative toxicity of HMs was lower at day 120. We stablished gene expression profile in C. elegans exposed to the polluted soil, treated and untreated with nZVI. The percentage of differentially expressed genes after treatment decreases with exposure time. After application of nZVI we found decreased toxicity, but increased biosynthesis of defensive enzymes responsive to oxidative stress. At day 14, when a decrease in toxicity has occurred, genes related to specific heavy metal detoxification mechanisms or to response to metal stress, were down regulated: gst-genes, encoding for glutathione-S-transferase, htm-1 (heavy metal tolerance factor), and pgp-5 and pgp-7, related to stress response to metals. At day 120, we found increased HMs toxicity compared to day 14, whereas the transcriptional oxidative and metal-induced responses were attenuated. These findings indicate that the profiled gene expression in C. elegans may be considered as an indicator of stress response that allows a reliable evaluation of the nanoremediation strategy.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ferro/química , Metais Pesados/toxicidade , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Transcrição Gênica/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ecotoxicologia , Nanopartículas Metálicas , Metais Pesados/análise , Estresse Oxidativo/genética , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Toxicogenética
5.
Sci Total Environ ; 706: 136041, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855644

RESUMO

We addressed the efficiency of a nanoremediation strategy using zero-valent iron nanoparticles (nZVI), in a case of co-mingled heavy metals (HM) pollution (Pb, Cd and Zn). We applied a combined set of physical-chemical, toxicological and molecular analyses to assess the effectiveness and ecosafety of nZVI (5% w/w) for environmental restoration. After 120 days, nZVI showed immobilization capacity for Pb (20%), it was scarcely effective for Zn (8%) and negligibly effective for Cd. The HMs immobilization in the nZVI treated soils (compared to control soil), reaches its maximum after 15 days (T3) as reflected in the decrease of HM toxicity towards V. fischeri. The overall abundance of the microbial community was similar in both sets of samples during all experiment, although an increase in the number of metabolically active bacteria was recorded 15 days post treatment. We studied the induced impact of nanoremediation on the soil microbial community structure by Next Generation Sequencing (NGS). Even when higher HM immobilization was recorded, no significant recovery of the microbial community structure was found in nZVI-treated soil. The most marked nZVI-induced structural shifts were observed at T3 (increase in the Firmicutes population with a decrease in Gram-negative bacteria). Predictive metagenomic analysis using PICRUSt showed differences among the predicted metagenomes of nZVI-treated and control soils. At T3 we found decrease in detoxification-related proteins or over-representation of germination-related proteins; after 120 days of nZVI exposure, higher abundance of proteins involved in regulation of cellular processes or sporulation-related proteins was detected. This study highlights the partial effectiveness of nanoremediation in multiple-metal contaminated soil in the short term. The apparent lack of recovery of biodiversity after application of nZVI and the decreased effectiveness of nanoremediation over time must be carefully considered to validate this technology when assurance of medium- to long-term immobilization of HMs is required.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30588856

RESUMO

Nanoscale zero-valent iron (nZVI) is a strong reducing agent used for in situ remediation of soil. The impacts of nZVI (5-10% w/w) on the soil microbial biodiversity and functionality of two soils (Lufa 2.2 and 2.4) were assessed. Illumina MiSeq technology was used to evaluate the structure of soil microbiomes after 21 days of exposure. Proteobacteria, Verrucomicrobia, Firmicutes and Actinobacteria were the most abundant phyla in both soils. However, the dynamics of bacterial community composition following nZVI addition differed. nZVI exposure induced pronounced shifts in the microbial composition of soil 2.4, but not in soil 2.2; an increase in Verrucomicrobia abundance was the unique common taxonomic pattern observed in both soils. The PICRUSt approach was applied to predict the functional composition of each metagenome. Environmental information processing function (membrane transport) was decreased in both nZVI-spiked soils, although soil 2.4 samples were enriched in functions involved in cellular processes and metabolism. The effects of nZVI on autochthonous bacterial communities clearly varied with the soil type assessed; changes at the phylogenetic level appeared to be more abundant than those observed at the functional level, and thus, the overall effort of the soil ecosystem might involve the maintenance of functionality following nZVI exposure.


Assuntos
Ferro/toxicidade , Microbiota/efeitos dos fármacos , Nanopartículas/química , Microbiologia do Solo/normas , Poluentes do Solo/toxicidade , Solo/química , Actinobacteria/isolamento & purificação , Biodiversidade , Firmicutes/isolamento & purificação , Ferro/química , Metagenoma/efeitos dos fármacos , Microbiota/genética , Filogenia , Proteobactérias/isolamento & purificação , Poluentes do Solo/química
7.
Front Microbiol ; 8: 539, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421043

RESUMO

The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.

8.
Sci Rep ; 7: 44941, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28327551

RESUMO

Peritoneal dialysis (PD) is an effective renal replacement therapy, but a significant proportion of patients suffer PD-related complications, which limit the treatment duration. Mesothelial-to-mesenchymal transition (MMT) contributes to the PD-related peritoneal dysfunction. We analyzed the genetic reprograming of MMT to identify new biomarkers that may be tested in PD-patients. Microarray analysis revealed a partial overlapping between MMT induced in vitro and ex vivo in effluent-derived mesothelial cells, and that MMT is mainly a repression process being higher the number of genes that are down-regulated than those that are induced. Cellular morphology and number of altered genes showed that MMT ex vivo could be subdivided into two stages: early/epithelioid and advanced/non-epithelioid. RT-PCR array analysis demonstrated that a number of genes differentially expressed in effluent-derived non-epithelioid cells also showed significant differential expression when comparing standard versus low-GDP PD fluids. Thrombospondin-1 (TSP1), collagen-13 (COL13), vascular endothelial growth factor A (VEGFA), and gremlin-1 (GREM1) were measured in PD effluents, and except GREM1, showed significant differences between early and advanced stages of MMT, and their expression was associated with a high peritoneal transport status. The results establish a proof of concept about the feasibility of measuring MMT-associated secreted protein levels as potential biomarkers in PD.


Assuntos
Reprogramação Celular/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Genômica , Diálise Peritoneal , Biomarcadores , Soluções para Diálise/química , Perfilação da Expressão Gênica , Genômica/métodos , Glicólise , Humanos , Diálise Peritoneal/efeitos adversos , Transcriptoma
9.
World J Microbiol Biotechnol ; 32(12): 201, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27785708

RESUMO

The analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data. Herein, this microarray was applied to capture new insights into the catabolic capacities of copper-resistant actinomycete Amycolatopsis tucumanensis DSM 45259. The array data support the presumptive ability of the DSM 45259 strain to utilize single alkanes (n-decane and n-tetradecane) and aromatics such as benzoate, phthalate and phenol as sole carbon sources, which was experimentally validated by cultivation and mass spectrometry. Interestingly, while in strain DSM 45259 alkB gene encoding an alkane hydroxylase is most likely highly similar to that found in other actinomycetes, the genes encoding benzoate 1,2-dioxygenase, phthalate 4,5-dioxygenase and phenol hydroxylase were homologous to proteobacterial genes. This suggests that strain DSM 45259 contains catabolic genes distantly related to those found in other actinomycetes. Together, this study not only provided new insight into the catabolic abilities of strain DSM 45259, but also suggests that this strain contains genes uncommon within actinomycetes.


Assuntos
Actinobacteria/genética , Proteínas de Bactérias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de DNA/métodos , Actinobacteria/metabolismo , Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Cobre/metabolismo , Evolução Molecular , Metabolismo
10.
BMC Genomics ; 12: 107, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21320323

RESUMO

BACKGROUND: Mannoproteins construct the outer cover of the fungal cell wall. The covalently linked cell wall protein Ccw12p is an abundant mannoprotein. It is considered as crucial structural cell wall component since in baker's yeast the lack of CCW12 results in severe cell wall damage and reduced mating efficiency. RESULTS: In order to explore the function of CCW12, we performed a Synthetic Genetic Analysis (SGA) and identified genes that are essential in the absence of CCW12. The resulting interaction network identified 21 genes involved in cell wall integrity, chitin synthesis, cell polarity, vesicular transport and endocytosis. Among those are PFD1, WHI3, SRN2, PAC10, FEN1 and YDR417C, which have not been related to cell wall integrity before. We correlated our results with genetic interaction networks of genes involved in glucan and chitin synthesis. A core of genes essential to maintain cell integrity in response to cell wall stress was identified. In addition, we performed a large-scale transcriptional analysis and compared the transcriptional changes observed in mutant ccw12Δ with transcriptomes from studies investigating responses to constitutive or acute cell wall damage. We identified a set of genes that are highly induced in the majority of the mutants/conditions and are directly related to the cell wall integrity pathway and cell wall compensatory responses. Among those are BCK1, CHS3, EDE1, PFD1, SLT2 and SLA1 that were also identified in the SGA. In contrast, a specific feature of mutant ccw12Δ is the transcriptional repression of genes involved in mating. Physiological experiments substantiate this finding. Further, we demonstrate that Ccw12p is present at the cell periphery and highly concentrated at the presumptive budding site, around the bud, at the septum and at the tip of the mating projection. CONCLUSIONS: The combination of high throughput screenings, phenotypic analyses and localization studies provides new insight into the function of Ccw12p. A compensatory response, culminating in cell wall remodelling and transport/recycling pathways is required to buffer the loss of CCW12. Moreover, the enrichment of Ccw12p in bud, septum and mating projection is consistent with a role of Ccw12p in preserving cell wall integrity at sites of active growth.The microarray data produced in this analysis have been submitted to NCBI GEO database and GSE22649 record was assigned.


Assuntos
Parede Celular/metabolismo , Redes Reguladoras de Genes , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Parede Celular/genética , DNA Fúngico/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glicoproteínas de Membrana/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Microbiol ; 79(6): 1529-46, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21231968

RESUMO

O-mannosylation is a crucial protein modification in eukaryotes that is initiated by the essential family of protein O-mannosyltransferases (PMTs). Here we demonstrate that in the model yeast Saccharomyces cerevisiae rhodanine-3-acetic acid derivatives affect members of all PMT subfamilies. Specifically, we used OGT2468 to analyse genome-wide transcriptional changes in response to general inhibition of O-mannosylation in baker's yeast. PMT inhibition results in the activation of the cell wall integrity (CWI) pathway. Coinciding, the mitogen-activated kinase Slt2p is activated in vivo and CWI pathway mutants are hypersensitive towards OGT2468. Further, induction of many target genes of the unfolded protein response (UPR) and ER-associated protein degradation (ERAD) is observed. The interdependence of O-mannosylation and UPR/ERAD is confirmed by genetic interactions between HAC1 and PMTs, and increased degradation of the ERAD substrate Pdr5p* in pmtΔ mutants. Transcriptome analyses further suggested that mating and filamentous growth are repressed upon PMT inhibition. Accordingly, in vivo mating efficiency and invasive growth are considerably decreased upon OGT2468 treatment. Quantitative PCR and ChIP analyses suggest that downregulation of mating genes is dependent on the transcription factor Ste12p. Finally, inhibitor studies identified a role of the Ste12p-dependent vegetative signalling cascade in the adaptive response to inhibition of O-mannosylation.


Assuntos
Genoma Fúngico , Genômica , Manose/metabolismo , Rodanina/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Rodanina/análogos & derivados , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 285(25): 19521-31, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20388713

RESUMO

Mtl1 is a member of the cell wall integrity (CWI) pathway of Saccharomyces cerevisiae, which functions as a cell wall sensor for oxidative stress. Genome-wide transcriptional analysis revealed a cluster of genes that were down-regulated in the absence of Mtl1. Many of these genes were potentially regulated by the general stress response factor Msn2/Msn4. In response to rapamycin, caffeine, glucose starvation and oxidative stress provoked by H(2)O(2), mtl1 presents a significant loss of viability as well as a deficiency in the transcriptional response mediated by Msn2/Msn4. The Mtl1 function was required (i) to induce ribosomal gene repression, (ii) to induce the general stress response driven by the transcription factor Msn2/Msn4, and (iii) to activate the CWI pathway in response to both glucose starvation and oxidative stress. We also detected higher cAMP levels in the mtl1 mutant than in wild type cells indicative of up-regulated RAS2-PKA activity. Disruption of TOR1, disruption of RAS2, or hyperactivation of Rho1 restored both the viability and the transcriptional function (both ribosomal and Msn2/Msn4-dependent gene expression) in the mtl1 mutant to almost wild type levels when cells were starved of glucose or stressed with H(2)O(2). Taking our results together, we propose an essential role for Mtl1 in signaling oxidative stress and quiescence to the CWI pathway and to the general stress response through Rho1 and the inhibition of either the TOR1 or RAS2 functions. These mechanisms would be required to allow cells to adapt to both oxidative and nutritional stresses.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Parede Celular/metabolismo , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/metabolismo
13.
Acta Biomater ; 5(7): 2633-46, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19342322

RESUMO

This study focusses on the gene expression profile related to a new rhBMP-2 carrier material, chitosan film. This film could be suitable for use as an osteoinductive coating of commercially available titanium implants. The developed material was characterized, biocompatibility was tested and the cellular response was extensively characterized by transcriptional expression studies. Finally, in vivo studies were carried out to confirm the osteoinductivity of the developed coating. Results show good material properties for cell adhesion and proliferation. Presented data show cellular differentiation to the osteoblastic phenotype due to rhBMP-2, with a 90% common transcriptional response between the control rhBMP-2 treatment and the developed chitosan/rhBMP-2 film. The growing surface also had an influence on the observed cellular response and was quantified as 7% of the total. These results indicate that both the growth factor and the material induce a cell response, but this is mainly driven by the osteoinductor factor. In vivo, new bone formation and early vascularization was observed around chitosan/rhBMP-2 coated titanium pieces implanted in mouse muscle. In contrast, control implants did not induce this reaction. This work, therefore, shows both in vitro and in vivo that chitosan/rhBMP-2 film is a promising osteoinductive coating for titanium implantable materials.


Assuntos
Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/farmacologia , Quitosana/química , Portadores de Fármacos/química , Osteoblastos/fisiologia , Osteogênese/fisiologia , Animais , Materiais Revestidos Biocompatíveis , Perfilação da Expressão Gênica , Humanos , Teste de Materiais , Membranas Artificiais , Camundongos , Camundongos Endogâmicos BALB C , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Proteínas Recombinantes
14.
J Nutr Biochem ; 18(4): 259-71, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16860979

RESUMO

Consumption of berries and red fruits rich in polyphenols may contribute to the reduction of colon cancer through mechanisms not yet understood. In this study, we investigated the response of subconfluent Caco-2 cells (a human colon carcinoma model) to repetitive exposure (2 h a day for a 4-day period) of a subtoxic dose of a chokeberry (Aronia melanocarpa) juice containing mixed polyphenols. To mimic physiological conditions, we subjected the chokeberry juice to in vitro gastric and pancreatic digestion. The effects on viability, proliferation and cell cycle were determined, and changes in the expression of genes in response to the chokeberry treatment were screened using Affymetrix oligonucleotide microarrays. Exposure to the chokeberry juice inhibited Caco-2 cell proliferation by causing G(2)/M cell cycle arrest. We detected changes in the expression of a group of genes involved in cell growth and proliferation and cell cycle regulation, as well as those associated to colorectal cancer. A selection of these genes was further confirmed by quantitative RT-PCR. Among these, the tumor suppressor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), whose expression is known to be reduced in the majority of early adenomas and carcinomas, was up-regulated by the treatment both at the mRNA and protein levels (as shown by flow cytometry analysis). CEACAM1, with a significant regulatory role on cell proliferation of particular interest at early stages of cancer development, may be a potential target for chemoprevention by food components such as those present in polyphenol-rich fruits.


Assuntos
Antígenos CD/biossíntese , Bebidas , Moléculas de Adesão Celular/biossíntese , Flavonoides/farmacologia , Fenóis/farmacologia , Photinia , Ácidos e Sais Biliares/farmacologia , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suco Gástrico , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Pancreatina/farmacologia , Polifenóis , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...