Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Photonics ; 10(6): 1821-1831, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37363627

RESUMO

Molecular chirality plays fundamental roles in biology. The chiral response of a molecule occurs at a specific spectral position, determined by its molecular structure. This fingerprint can be transferred to other spectral regions via the interaction with localized surface plasmon resonances of gold nanoparticles. Here, we demonstrate that molecular chirality transfer occurs also for plasmonic lattice modes, providing a very effective and tunable means to control chirality. We use colloidal self-assembly to fabricate non-close packed, periodic arrays of achiral gold nanoparticles, which are embedded in a polymer film containing chiral molecules. In the presence of the chiral molecules, the surface lattice resonances (SLRs) become optically active, i.e., showing handedness-dependent excitation. Numerical simulations with varying lattice parameters show circular dichroism peaks shifting along with the spectral positions of the lattice modes, corroborating the chirality transfer to these collective modes. A semi-analytical model based on the coupling of single-molecular and plasmonic resonances rationalizes this chirality transfer.

2.
J Phys Chem C Nanomater Interfaces ; 126(20): 8703-8709, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35655935

RESUMO

Silver nanowires are used in many applications, ranging from transparent conductive layers to Raman substrates and sensors. Their performance often relies on their unique optical properties that emerge from localized surface plasmon resonances in the ultraviolet. To tailor the nanowire geometry for a specific application, a correct understanding of the relationship between the wire's structure and its optical properties is therefore necessary. However, while the colloidal synthesis of silver nanowires typically leads to structures with pentagonally twinned geometries, their optical properties are often modeled assuming a cylindrical cross-section. Here we highlight the strengths and limitations of such an approximation by numerically calculating the optical and electrical response of pentagonally twinned silver nanowires and nanowire networks. We find that our accurate modeling is crucial to deduce structural information from experimentally measured extinction spectra of colloidally synthesized nanowire suspensions and to predict the performance of nanowire-based near-field sensors. On the contrary, the cylindrical approximation is fully capable of capturing the optical and electrical performance of nanowire networks used as transparent electrodes. Our results can help assess the quality of nanowire syntheses and guide in the design of optimized silver nanowire-based devices.

3.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35318848

RESUMO

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

4.
Nat Commun ; 12(1): 7330, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921142

RESUMO

Time Reversal Symmetry (TRS) broken topological phases provide gapless surface states protected by topology, regardless of additional internal symmetries, spin or valley degrees of freedom. Despite the numerous demonstrations of 2D topological phases, few examples of 3D topological systems with TRS breaking exist. In this article, we devise a general strategy to design 3D Chern insulating (3D CI) cubic photonic crystals in a weakly TRS broken environment with orientable and arbitrarily large Chern vectors. The designs display topologically protected chiral and unidirectional surface states with disjoint equifrequency loops. The resulting crystals present the following characteristics: First, by increasing the Chern number, multiple surface states channels can be supported. Second, the Chern vector can be oriented along any direction simply changing the magnetization axis, opening up larger 3D CI/3D CI interfacing possibilities as compared to 2D. Third, by lowering the TRS breaking requirements, the system is ideal for realistic photonic applications where the magnetic response is weak.

5.
Nat Methods ; 18(11): 1287-1293, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663955

RESUMO

The study of electronic properties of materials at the nanoscale has unveiled physical laws and generated materials such as nanoparticles, quantum dots, nanodiamonds, nanoelectrodes, and nanoprobes. Independently, large-scale public and private neuroscience programs have been launched to develop methods to measure and manipulate neural circuits in living animals and humans. Here, we review an upcoming field, NanoNeuro, defined as the intersection of nanoscience and neuroscience, that aims to develop nanoscale methods to record and stimulate neuronal activity. Because of their unique physical properties, nanomaterials have intrinsic advantages as biosensors and actuators, and they may be applicable to humans without the need for genetic modifications. Thus, nanoscience could make major methodological contributions to the future of neuroscience and, more generally, to biomedical sciences.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas/química , Nanotecnologia/métodos , Neurociências , Pontos Quânticos , Animais , Humanos
6.
Phys Rev Lett ; 125(7): 073205, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32857534

RESUMO

The directionality and polarization of light show peculiar properties when the scattering by a dielectric sphere can be described exclusively by electric and magnetic dipolar modes. Particularly, when these modes oscillate in phase with equal amplitude, at the so-called first Kerker condition, the zero optical backscattering condition emerges for nondissipating spheres. However, the role of absorption and optical gain in the first Kerker condition remains unexplored. In this work, we demonstrate that either absorption or optical gain precludes the first Kerker condition and, hence, the absence of backscattered radiation light, regardless of the particle's size, incident wavelength, and incoming polarization. Finally, we derive the necessary prerequisites of the second Kerker condition of the zero forward light scattering, finding that optical gain is a compulsory requirement.

7.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315902

RESUMO

Chameleons are masters of light, expertly changing their color, pattern, and reflectivity in response to their environment. Engineered materials that share this tunability can be transformative, enabling active camouflage, tunable holograms, and novel colorimetric medical sensors. While progress has been made in creating artificial chameleon skin, existing schemes often require external power, are not continuously tunable, and may prove too stiff or bulky for applications. Here, a chemically tunable, large-area metamaterial is demonstrated that accesses a wide range of colors and refractive indices. An ordered monolayer of nanoresonators is fabricated, then its optical response is dynamically tuned by infiltrating its polymer substrate with solvents. The material shows a strong magnetic response with a dependence on resonator spacing that leads to a highly tunable effective permittivity, permeability, and refractive index spanning negative and positive values. The unity-order index tuning exceeds that of traditional electro-optic and photochromic materials and is robust to cycling, providing a path toward programmable optical elements and responsive light routing.

8.
ACS Nano ; 10(1): 1346-54, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26639023

RESUMO

Plasmonic multinanoparticle systems exhibit collective electric and magnetic resonances that are fundamental for the development of state-of-the-art optical nanoantennas, metamaterials, and surface-enhanced spectroscopy substrates. While electric dipolar modes have been investigated in both the classical and quantum realm, little attention has been given to magnetic and other "dark" modes at the smallest dimensions. Here, we study the collective electric, magnetic, and dark modes of colloidally synthesized silver nanosphere trimers with varying interparticle separation using scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). This technique enables direct visualization and spatially selective excitation of individual trimers, as well as manipulation of the interparticle distance into the subnanometer regime with the electron beam. Our experiments reveal that bonding electric and magnetic modes are significantly impacted by quantum effects, exhibiting a relative blueshift and reduced EELS amplitude compared to classical predictions. In contrast, the trimer's electric dark mode is not affected by quantum tunneling for even Ångström-scale interparticle separations. We employ a quantum-corrected model to simulate the effect of electron tunneling in the trimer which shows excellent agreement with experimental results. This understanding of classical and quantum-influenced hybridized modes may impact the development of future quantum plasmonic materials and devices, including Fano-like molecular sensors and quantum metamaterials.

9.
Nat Nanotechnol ; 10(5): 429-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25849788

RESUMO

Tomography has enabled the characterization of the Earth's interior, visualization of the inner workings of the human brain, and three-dimensional reconstruction of matter at the atomic scale. However, tomographic techniques that rely on optical excitation or detection are generally limited in their resolution by diffraction. Here, we introduce a tomographic technique--cathodoluminescence spectroscopic tomography--to probe optical properties in three dimensions with nanometre-scale spatial and spectral resolution. We first obtain two-dimensional cathodoluminescence maps of a three-dimensional nanostructure at various orientations. We then use the method of filtered back-projection to reconstruct the cathodoluminescence intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. The experimental signal can be further correlated with the radiative local density of optical states in particular regions of the reconstruction. We demonstrate how cathodoluminescence tomography can be used to achieve nanoscale three-dimensional visualization of light-matter interactions by reconstructing a three-dimensional metal-dielectric nanoresonator.

10.
Nano Lett ; 15(1): 120-6, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25545292

RESUMO

The resonant properties of a plasmonic cavity are determined by the size of the cavity, the surface plasmon polariton (SPP) dispersion relationship, and the complex reflection coefficients of the cavity boundaries. In small wavelength-scale cavities, the phase propagation due to reflections from the cavity walls is of a similar magnitude to propagation due to traversing the cavity. Until now, this reflection phase has been inferred from measurements of the resonant frequencies of a cavity of known dispersion and length. In this work, we present a method for measuring the complex reflection coefficients of a truncation in a 1D surface plasmon waveguide using electron energy loss spectroscopy in the scanning transmission electron microscope (STEM EELS) and show that this insight can be used to engineer custom cavities with engineered reflecting boundaries, whose resonant wavelengths and internal mode density profiles can be analytically predicted given knowledge of the cavity dimensions and complex reflection coefficients of the boundaries.


Assuntos
Modelos Teóricos , Ressonância de Plasmônio de Superfície/métodos
11.
J Phys Chem Lett ; 5(22): 4020-31, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26276488

RESUMO

Upconversion, the conversion of photons from lower to higher energies, is a process that promises applications ranging from high-efficiency photovoltaic and photocatalytic cells to background-free bioimaging and therapeutic probes. Existing upconverting materials, however, remain too inefficient for viable implementation. In this Perspective, we describe the significant improvements in upconversion efficiency that can be achieved using plasmon resonances. As collective oscillations of free electrons, plasmon resonances can be used to enhance both the incident electromagnetic field intensity and the radiative emission rates. To date, this approach has shown upconversion enhancements up to 450×. We discuss both theoretical underpinnings and experimental demonstrations of plasmon-enhanced upconversion, examining the roles of upconverter quantum yield, plasmonic geometry, and plasmon spectral overlap. We also discuss nonoptical consequences of including metal nanostructures near upconverting emitters. The rapidly expanding field of plasmon-enhanced upconversion provides novel fundamental insight into nanoscale light-matter interactions while improving prospects for technological relevance.

12.
Nano Lett ; 13(2): 564-9, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23245286

RESUMO

The plasmon resonances of two closely spaced metallic particles have enabled applications including single-molecule sensing and spectroscopy, novel nanoantennas, molecular rulers, and nonlinear optical devices. In a classical electrodynamic context, the strength of such dimer plasmon resonances increases monotonically as the particle gap size decreases. In contrast, a quantum mechanical framework predicts that electron tunneling will strongly diminish the dimer plasmon strength for subnanometer-scale separations. Here, we directly observe the plasmon resonances of coupled metallic nanoparticles as their gap size is reduced to atomic dimensions. Using the electron beam of a scanning transmission electron microscope (STEM), we manipulate pairs of ~10-nm-diameter spherical silver nanoparticles on a substrate, controlling their convergence and eventual coalescence into a single nanosphere. We simultaneously employ electron energy-loss spectroscopy (EELS) to observe the dynamic plasmonic properties of these dimers before and after particle contact. As separations are reduced from 7 nm, the dominant dipolar peak exhibits a redshift consistent with classical calculations. However, gaps smaller than ~0.5 nm cause this mode to exhibit a reduced intensity consistent with quantum theories that incorporate electron tunneling. As the particles overlap, the bonding dipolar mode disappears and is replaced by a dipolar charge transfer mode. Our dynamic imaging, manipulation, and spectroscopy of nanostructures enables the first full spectral mapping of dimer plasmon evolution and may provide new avenues for in situ nanoassembly and analysis in the quantum regime.


Assuntos
Nanopartículas Metálicas/química , Teoria Quântica , Prata/química , Ressonância de Plasmônio de Superfície , Microscopia Eletrônica de Transmissão e Varredura
13.
Opt Express ; 20(23): 25201-12, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23187337

RESUMO

We introduce a design strategy to maximize the Near Field (NF) enhancement near plasmonic antennas. We start by identifying and studying the basic electromagnetic effects that contribute to the electric near field enhancement. Next, we show how the concatenation of a convex and a concave surface allows merging all the effects on a single, continuous nanoantenna. As an example of this NF maximization strategy, we engineer a nanostructure, the indented nanocone. This structure, combines all the studied NF maximization effects with a synergistic boost provided by a Fano-like interference effect activated by the presence of the concave surface. As a result, the antenna exhibits a NF amplitude enhancement of ~ 800, which transforms into ~1600 when coupled to a perfect metallic surface. This strong enhancement makes the proposed structure a robust candidate to be used in field enhancement based technologies. Further elaborations of the concept may produce even larger and more effective enhancements.


Assuntos
Técnicas Biossensoriais , Nanoestruturas/química , Nanotecnologia/métodos , Biofísica/métodos , Campos Eletromagnéticos , Radiação Eletromagnética , Nanopartículas Metálicas/química , Modelos Estatísticos , Modelos Teóricos , Óptica e Fotônica/métodos , Prata/química , Espectrofotometria/métodos , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
14.
Nano Lett ; 11(9): 3927-34, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21819059

RESUMO

Assemblies of strongly coupled plasmonic nanoparticles can support highly tunable electric and magnetic resonances in the visible spectrum. In this Letter, we theoretically demonstrate Fano-like interference effects between the fields radiated by the electric and magnetic modes of symmetric nanoparticle trimers. Breaking the symmetry of the trimer system leads to a strong interaction between the modes. The near and far-field electromagnetic properties of the broken symmetry trimer are tunable across a large spectral range. We exploit this Fano-like effect to demonstrate spatial and temporal control of the localized electromagnetic hotspots in the plasmonic trimer.


Assuntos
Técnicas Biossensoriais , Nanotecnologia/métodos , Campos Eletromagnéticos , Radiação Eletromagnética , Magnetismo , Modelos Estatísticos , Nanopartículas/química , Óptica e Fotônica , Ressonância de Plasmônio de Superfície
15.
Phys Rev Lett ; 101(15): 157403, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18999639

RESUMO

A novel resonant mechanism involving the interference of a broadband plasmon with the narrowband vibration from molecules is presented. With the use of this concept, we demonstrate experimentally the enormous enhancement of the vibrational signals from less than one attomol of molecules on individual gold nanowires, tailored to act as plasmonic nanoantennas in the infrared. By detuning the resonance via a change in the antenna length, a Fano-type behavior of the spectral signal is observed, which is clearly supported by full electrodynamical calculations. This resonant mechanism can be a new paradigm for sensitive infrared identification of molecular groups.


Assuntos
Nanoestruturas/química , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...