Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 901: 165887, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37517715

RESUMO

Understanding how Mediterranean forests respond to the increasing frequency of extreme droughts and forest densification is crucial for effective land management in the present context of climate change and land abandonment. We study the responses of Iberian holm oak (Quercus ilex L.) woodlands to recent extreme droughts during 2000-2019 along broad gradients of climate aridity and forest structure. To this purpose, we apply large-scale remote-sensing using MODIS EVI as a primary production proxy in 5274 Q. ilex sites distributed within a 100,000 km2 region in eastern Spain. These woodlands were extensively affected by two extreme drought events in 2005 and 2012. Resistance, assessed as the capacity of the ecosystems to maintain primary production during drought, was significantly lower for semi-arid than for sub-humid and dry-transition conditions. Holm oak woodlands located in semi-arid areas of the region showed also poorer resilience to drought, characterized by low capacity to fully recover to their pre-drought production levels. Further, drought intensity and both pre- and post-drought hydric conditions controlled the variations of resistance, recovery and resilience between the two analyzed extreme drought events. Drought effects were particularly negative for dense Q. ilex stands under semi-arid climate conditions, where strong competition for scarce water resources reduced drought resistance. The observed drought vulnerability of semi-arid holm oak woodlands may affect the long-term stability of these dry forests. Adaptive management strategies, such as selective forest thinning, may be useful for improving drought responses in these more vulnerable semi-arid woodlands. Conversely, natural rewilding may more appropriately guide management actions for more humid areas, where densely developed Q. ilex woodlands show in general a high ability to maintain ecosystem primary production during drought.


Assuntos
Ecossistema , Quercus , Secas , Quercus/fisiologia , Espanha , Florestas , Mudança Climática , Árvores/fisiologia
2.
Plant Biol (Stuttg) ; 20(3): 627-635, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29283472

RESUMO

Self-pollination by geitonogamy is likely in self-compatible plants that simultaneously expose a large number of flowers to pollinators. However, progeny of these plants is often highly allogamous. Although mechanisms to increase cross-pollination have been identified and studied, their relative importance has rarely been addressed simultaneously in plant populations. We used Rosmarinus officinalis to explore factors that influence the probability of self-fertilisation due to geitonogamy or that purge its consequences, focusing on their effects on seed germination and allogamy rate. We experimentally tested the effect of geitonogamy on the proportion of filled seeds and how it influences germination rate. During two field seasons, we studied how life history and flowering traits of individuals influence seed germination and allogamy rates of their progeny in wild populations at the extremes of the altitudinal range. The traits considered were plant size, population density, duration of the flowering season, number of open flowers, flowering synchrony among individuals within populations and proportion of male-sterile flowers. We found that most seeds obtained experimentally from self-pollination were apparently healthy but empty, and that the proportion of filled seeds drove the differences in germination rate between self- and cross-pollination experiments. Plants from wild populations consistently had low germination rate and high rate of allogamy, as determined with microsatellites. Germination rate related positively to the length of the flowering season, flowering synchrony and the ratio of male-sterile flowers, whereas the rate of allogamous seedlings was positively related only to the ratio of male-sterile flowers. Rosemary plants purge most of the inbreeding caused by its pollination system by aborting the seeds. This study showed that the rates of seed germination and allogamy of the seedlings depend on a complex combination of factors that vary in space and time. Male sterility of flowers, length of the flowering season and flowering synchrony of individuals within populations all favour high rates of cross-pollination, therefore increasing germination and allogamy rates. Flowering traits appear to be highly plastic and respond to local and seasonal conditions.


Assuntos
Germinação/fisiologia , Hibridização Genética/fisiologia , Endogamia , Rosmarinus/fisiologia , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Autofertilização/fisiologia , Flores/anatomia & histologia , Flores/fisiologia , Polinização
3.
New Phytol ; 193(3): 705-712, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22129465

RESUMO

• Differences in reproductive investment can trigger asymmetric, context-dependent, functional strategies between genders in dioecious species. However, little is known about the gender responses of dioecious species to nutrient availability. • We experimentally fertirrigated a set of male and female Juniperus thurifera trees monthly for 2 yr. Water potential, photosynthesis rate and stomatal conductance were measured monthly for 2 yr, while shoot nitrogen (N) concentration, carbon isotopic composition (δ(13) C), branch growth, trunk radial growth and reproductive investment per branch were measured yearly. • Control males had lower gas exchange rates and radial growth but greater reproductive investment and higher water use efficiency (WUE; as inferred from more positive δ(13) C values) than females. Fertirrigation did not affect water potential or WUE but genders responded differently to increased nutrient availability. The two genders similarly increased shoot N concentration when fertilized. The increase in shoot N was associated with increased photosynthesis in males but not in females, which presented consistently high photosynthetic rates across treatments. • Our results suggest that genders invest N surplus in different functions, with females presenting a long-term strategy by increasing N storage to compensate for massive reproductive masting events, while males seem to be more reactive to current nutrient availability, promoting gas-exchange capacity.


Assuntos
Juniperus/fisiologia , Nitrogênio/metabolismo , Isótopos de Carbono , Juniperus/crescimento & desenvolvimento , Modelos Lineares , Fotossíntese/fisiologia , Brotos de Planta/fisiologia , Reprodução/fisiologia , Estações do Ano
4.
Ann Bot ; 98(4): 885-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16905569

RESUMO

BACKGROUND AND AIMS: In dioecious species male and female plants experience different selective pressures and often incur different reproductive costs. An increase in reproductive investment habitually results in a reduction of the resources available to other demands, such as vegetative growth. Tree-ring growth is an integrative measure that tracks vegetative investment through the plant's entire life span. This allows the study of gender-specific vegetative allocation strategies in dioecious tree species thoughout their life stages. METHODS: Standard dendrochronological procedures were used to measure tree-ring width. Analyses of time-series were made by means of General Mixed Models with correction of autocorrelated values by the use of an autoregressive covariance structure of order one. Bootstrapped correlation functions were used to study the relationship between climate and tree-ring width. KEY RESULTS: Male and female trees invest a similar amount of resources to ring growth during the early life stages of Juniperus thurifera. However, after reaching sexual maturity, tree-ring growth is reduced for both sexes. Furthermore, females experience a significantly stronger reduction in growth than males, which indicates a lower vegetative allocation in females. In addition, growth was positively correlated with precipitation from the current winter and spring in male trees but only to current spring precipitation in females. CONCLUSIONS: Once sexual maturity is achieved, tree rings grow proportionally more in males than in females. Differences in tree-ring growth between the genders could be a strategy to respond to different reproductive demands. Therefore, and responding to the questions of when, how and how much asked in the title, it is shown that male trees invest more resources to growth than female trees only after reaching sexual maturity, and they use these resources in a different temporal way.


Assuntos
Juniperus/fisiologia , Clima , Juniperus/crescimento & desenvolvimento , Reprodução/fisiologia , Estações do Ano , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...