Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274889

RESUMO

Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action.


Assuntos
Leishmania infantum , Nitroimidazóis , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/metabolismo , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Animais , Camundongos , Humanos , Células RAW 264.7 , Antiprotozoários/farmacologia , Antiprotozoários/química , Radicais Livres/metabolismo , Células Hep G2 , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/tratamento farmacológico , Morte Celular/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , NADH NADPH Oxirredutases
2.
Molecules ; 29(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38792079

RESUMO

Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.


Assuntos
Amida Sintases , Glutationa , NADH NADPH Oxirredutases , Trypanosoma , NADH NADPH Oxirredutases/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , Humanos , Amida Sintases/metabolismo , Amida Sintases/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Trypanosoma/metabolismo , Glutationa/metabolismo , Glutationa/análogos & derivados , Animais , Espermidina/análogos & derivados , Espermidina/metabolismo , Leishmania/efeitos dos fármacos , Leishmania/metabolismo , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Trypanosomatina/metabolismo , Trypanosomatina/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/metabolismo
3.
Trop Med Infect Dis ; 9(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38393119

RESUMO

One of the major drawbacks of current treatments for neglected tropical diseases is the low safety of the drugs used and the emergence of resistance. Leishmaniasis is a group of neglected diseases caused by protozoa of the trypanosomatidae family that lacks preventive vaccines and whose pharmacological treatments are scarce and unsafe. Combination therapy is a strategy that could solve the above-mentioned problems, due to the participation of several mechanisms of action and the reduction in the amount of drug necessary to obtain the therapeutic effect. In addition, this approach also increases the odds of finding an effective drug following the repurposing strategy. From the previous screening of two collections of repositioning drugs, we found that pyrvinium pamoate had a potent leishmanicidal effect. For this reason, we decided to combine it separately with two clinically used leishmanicidal drugs, miltefosine and paromomycin. These combinations were tested in axenic amastigotes of Leishmania infantum obtained from bone marrow cells and in intramacrophagic amastigotes obtained from primary cultures of splenic cells, both cell types coming from experimentally infected mice. Some of the combinations showed synergistic behavior, especially in the case of the combination of pyrvinium pamoate with paromomycin, and exhibited low cytotoxicity and good tolerability on intestinal murine organoids, which reveal the potential of these combinations for the treatment of leishmaniasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA