Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11562-11573, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497015

RESUMO

As the global urgency for effective antimicrobial agents intensifies, this work harnesses the widely demonstrated antimicrobial activity of silver nanoparticles (Ag-NPs) and proposes alternative synthesis approaches to metal-organic hybrid systems with antimicrobial activity. In this study, the proposed synthesis route involves decorating metallic nanoparticles into organic substrates without previous doping. The synthesis simultaneously uses polyethylene glycol for three crucial purposes: (1) acting as a mild reducing agent to generate Ag-NPs with a spherical shape and diameters ranging from 10 to just over 20 nm, (2) functioning as a dispersing agent for flakes of commercial nanostructured carbon supports, including reduced graphene oxide (rGO, ID-nano), and commercial carbon nanoplatelets from Sigma-Aldrich (GNPs, Sigma-Aldrich), and (3) serving as a promoter for the homogeneous anchoring of Ag-NPs in the carbon lattice without altering the conformation of the carbon lattice. This intricate interaction involves the π-orbitals from the sp2 hybridization honeycomb and the d-orbitals from the Ag-NPs, leading to the constructive rehybridization of rGO and GNPs. In our study, Ag-NPs/rGO are compared with a support lacking oxygenated groups in the lattice, such as commercial GNPs (Sigma-Aldrich), to produce Ag-NPs/GNPs. This comparison maintains constructive sp2 rehybridization, preserving the characteristic properties of rGO (ID-nano) and graphene nanoplatelets, including commercial GNPs (Sigma-Aldrich). Notably, oxygenated groups from rGO exhibit greater availability for exchanging oxo and hydroxy defects for Ag-NPs compared with GNPs (Sigma-Aldrich). The resulting Ag-NPs/rGO and Ag-NPs/GNP systems are thoroughly physicochemically characterized, employing techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and scanning transmission electron microscopy, revealing the successful integration of Ag-NPs with minimal alteration to the carbon lattice. Subsequent antimicrobial evaluation against Escherichia coli (E. coli) demonstrates significant activity, with Ag-NPs/rGO and Ag-NPs/GNPs registering similar minimum inhibitory concentrations of 50 µg mL-1. This study underscores the potential of our metal-organic hybrid systems as antimicrobial agents and provides insights into the constructive rehybridization process, paving the way for diverse applications in the biomedical and environmental fields.

2.
Carbohydr Polym ; 210: 85-91, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30732784

RESUMO

Cellulose, the most abundant biopolymer on earth, is produced at different ratios by all land plants. Since the morphology and crystallinity of cellulose are key factors involved in its enzymatic hydrolysis, in the present work, we tackled the study of the effects of such variables on the nanocellulose conversion into glucose. Cellulase from Trichoderma sp at 37 °C was used to produce glucose, the best results were found for the cellulose nanoplatelets (S-CNP) after 60 h of hydrolysis, which afforded a conversion of 47% to glucose, in contrast to 15% for the non-purified sample (W-CP) and 22% for microcrystalline cellulose (MCC20) used as control. The X-ray diffractogram recorded on the samples showed an initial crystallinity index of 45%, 54% and 72% for W-CNP, S-CNP and MCC20, respectively. Also, we showed that after 24 h of hydrolysis, long cellulose nanofibrils (∅ ≈ 30 nm) were found as a residue.


Assuntos
Celulase/metabolismo , Celulose/química , Nanoestruturas/química , Hidrólise , Temperatura , Trichoderma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...