Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1376554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694825

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a poor prognosis despite the advent of novel therapies. Consequently, a major need exists for new therapeutic options, particularly for patients with relapsed/refractory (R/R) AML. In recent years, it has been possible to individualize the treatment of a subgroup of patients, particularly with the emergence of multiple targeted therapies. Nonetheless, a considerable number of patients remain without therapeutic options, and overall prognosis remains poor because of a high rate of disease relapse. In this sense, cellular therapies, especially chimeric antigen receptor (CAR)-T cell therapy, have dramatically shifted the therapeutic options for other hematologic malignancies, such as diffuse large B cell lymphoma and acute lymphoblastic leukemia. In contrast, effectively treating AML with CAR-based immunotherapy poses major biological and clinical challenges, most of them derived from the unmet need to identify target antigens with expression restricted to the AML blast without compromising the viability of the normal hematopoietic stem cell counterpart. Although those limitations have hampered CAR-T cell therapy translation to the clinic, there are several clinical trials where target antigens, such as CD123, CLL-1 or CD33 are being used to treat AML patients showing promising results. Moreover, there are continuing efforts to enhance the specificity and efficacy of CAR-T cell therapy in AML. These endeavors encompass the exploration of novel avenues, including the development of dual CAR-T cells and next-generation CAR-T cells, as well as the utilization of gene editing tools to mitigate off-tumor toxicities. In this review, we will summarize the ongoing clinical studies and the early clinical results reported with CAR-T cells in AML, as well as highlight CAR-T cell limitations and the most recent approaches to overcome these barriers. We will also discuss how and when CAR-T cells should be used in the context of AML.

2.
Front Immunol ; 14: 1152498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122702

RESUMO

Purpose: CAR-T cell therapy has proven to be a disruptive treatment in the hematology field, however, less than 50% of patients maintain long-term response and early predictors of outcome are still inconsistently defined. Here, we aimed to optimize the detection of CD19 CAR-T cells in blood and to identify phenotypic features as early biomarkers associated with toxicity and outcomes. Experimental design: In this study, monitoring by flow cytometry and digital PCR (dPCR), and immunophenotypic characterization of circulating CAR-T cells from 48 patients treated with Tisa-cel or Axi-cel was performed. Results: Validation of the flow cytometry reagent for the detection of CAR-T cells in blood revealed CD19 protein conjugated with streptavidin as the optimal detection method. Kinetics of CAR-T cell expansion in blood confirmed median day of peak expansion at seven days post-infusion by both flow cytometry and digital PCR. Circulating CAR-T cells showed an activated, proliferative, and exhausted phenotype at the time of peak expansion. Patients with increased expansion showed more severe CRS and ICANs. Immunophenotypic characterization of CAR-T cells at the peak expansion identified the increased expression of co-inhibitory molecules PD1 and LAG3 and reduced levels of the cytotoxicity marker CD107a as predictors of a better long-term disease control. Conclusions: These data show the importance of CAR-T cells in vivo monitoring and identify the expression of PD1LAG3 and CD107a as early biomarkers of long-term disease control after CAR-T cell therapy.


Assuntos
Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Cinética , Linfócitos B/patologia , Linfócitos T/patologia , Linfoma Difuso de Grandes Células B/patologia
3.
Haematologica ; 108(2): 568-580, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722406

RESUMO

B-cell maturation antigen (BCMA) is the lead antigen for chimeric antigen receptor (CAR) T-cell therapy in multiple myeloma (MM). A challenge is inter- and intra-patient heterogeneity in BCMA expression on MM cells and BCMA downmodulation under therapeutic pressure. Accordingly, there is a desire to augment and sustain BCMA expression on MM cells in patients that receive BCMA-CAR T-cell therapy. We used all-trans retinoic acid (ATRA) to augment BCMA expression on MM cells and to increase the efficacy of BCMA-CAR T cells in pre-clinical models. We show that ATRA treatment leads to an increase in BCMA transcripts by quantitative reverse transcription polymerase chain reaction and an increase in BCMA protein expression by flow cytometry in MM cell lines and primary MM cells. Analyses with super-resolution microscopy confirmed increased BCMA protein expression and revealed an even distribution of non-clustered BCMA molecules on the MM cell membrane after ATRA treatment. The enhanced BCMA expression on MM cells after ATRA treatment led to enhanced cytolysis, cytokine secretion and proliferation of BCMA-CAR T cells in vitro, and increased efficacy of BCMA-CAR T-cell therapy in a murine xenograft model of MM in vivo (NSG/MM.1S). Combination treatment of MM cells with ATRA and the γ- secretase inhibitor crenigacestat further enhanced BCMA expression and the efficacy of BCMA-CAR T-cell therapy in vitro and in vivo. Taken together, the data show that ATRA treatment leads to enhanced BCMA expression on MM cells and consecutively, enhanced reactivity of BCMA-CAR T cells. The data support the clinical evaluation of ATRA in combination with BCMA-CAR T-cell therapy and potentially, other BCMA-directed immunotherapies.


Assuntos
Secretases da Proteína Precursora do Amiloide , Imunoterapia Adotiva , Mieloma Múltiplo , Tretinoína , Animais , Humanos , Camundongos , Antígeno de Maturação de Linfócitos B , Mieloma Múltiplo/terapia , Linfócitos T , Tretinoína/farmacologia , Receptores de Antígenos Quiméricos
4.
Sci Rep ; 12(1): 8348, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589917

RESUMO

Donor derived regulatory T lymphocytes and the JAK1/2 kinase inhibitor ruxolitinib are currently being evaluated as therapeutic options in the treatment of chronic graft versus host disease (cGvHD). In this work, we aimed to determine if the combined use of both agents can exert a synergistic effect in the treatment of GvHD. For this purpose, we studied the effect of this combination both in vitro and in a GvHD mouse model. Our results show that ruxolitinib favors the ratio of thymic regulatory T cells to conventional T cells in culture, without affecting the suppressive capacity of these Treg. The combination of ruxolitinib with Treg showed a higher efficacy as compared to each single treatment alone in our GvHD mouse model in terms of GvHD incidence, severity and survival without hampering graft versus leukemia effect. This beneficial effect correlated with the detection in the bone marrow of recipient mice of the infused donor allogeneic Treg after the adoptive transfer.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/tratamento farmacológico , Camundongos , Nitrilas , Pirazóis , Pirimidinas , Linfócitos T Reguladores/transplante
6.
Bone Marrow Transplant ; 56(12): 3049-3058, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34556806

RESUMO

In this study, we aimed to modify the immune response in the long term after allogeneic bone marrow transplantation (allo-BMT) by using the proteasome inhibitor ixazomib (IXZ) at the late stages of the post-transplant period. This approach facilitated the immune reconstitution after transplantation. IXZ significantly prolonged survival and decreased the risk of chronic graft-versus-host disease (cGvHD) in two different murine models without hampering the graft-versus-leukemia (GvL) effect, as confirmed by bioluminescence assays. Remarkably, the use of IXZ was related to an increase of regulatory T cells both in peripheral blood and in the GvHD target organs and a decrease of effector donor T cells. Regarding B cells, IXZ treated mice had faster recovery of B cells in PB and of pre-pro-B cells in the bone marrow. Mice receiving ixazomib had a lower number of neutrophils in the GvHD target organs as compared to the vehicle group. In summary, delayed administration of IXZ ameliorated cGvHD while preserving GvL and promoted a pro-tolerogenic immune response after allo-BMT.


Assuntos
Doença Enxerto-Hospedeiro , Animais , Transplante de Medula Óssea , Compostos de Boro , Glicina/análogos & derivados , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Efeito Enxerto vs Leucemia , Imunidade , Camundongos
7.
Leukemia ; 35(1): 201-214, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32350373

RESUMO

Multiple myeloma (MM) is incurable, so there is a significant unmet need for effective therapy for patients with relapsed or refractory disease. This situation has not changed despite the recent approval of the anti-CD38 antibody daratumumab, one of the most potent agents in MM treatment. The efficiency of daratumumab might be improved by combining it with synergistic anti-MM agents. We therefore investigated the potential of the histone deacetylase (HDAC) inhibitor ricolinostat to up-regulate CD38 on MM cells, thereby enhancing the performance of CD38-specific therapies. Using quantitative reverse transcription polymerase chain reaction and flow cytometry, we observed that ricolinostat significantly increases CD38 RNA levels and CD38 surface expression on MM cells. Super-resolution microscopy imaging of MM cells by direct stochastic optical reconstruction microscopy confirmed this rise with molecular resolution and revealed homogeneous distribution of CD38 molecules on the cell membrane. Particularly important is that combining ricolinostat with daratumumab induced enhanced lysis of MM cells. We also evaluated next-generation HDAC6 inhibitors (ACY-241, WT-161) and observed similar increase of CD38 levels suggesting that the upregulation of CD38 expression on MM cells by HDAC6 inhibitors is a class effect. This proof-of-concept illustrates the potential benefit of combining HDAC6 inhibitors and CD38-directed immunotherapy for MM treatment.


Assuntos
ADP-Ribosil Ciclase 1/genética , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Glicoproteínas de Membrana/genética , Mieloma Múltiplo/genética , ADP-Ribosil Ciclase 1/metabolismo , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Sinergismo Farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/farmacologia , Imunofenotipagem , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Pirimidinas/farmacologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Front Immunol ; 11: 1128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582204

RESUMO

Multiple myeloma (MM) remains an incurable disease regardless of recent advances in the field. Therefore, a substantial unmet need exists to treat patients with relapsed/refractory myeloma. The use of novel agents such as daratumumab, elotuzumab, carfilzomib, or pomalidomide, among others, usually cannot completely eradicate myeloma cells. Although these new drugs have had a significant impact on the prognosis of MM patients, the vast majority ultimately become refractory or can no longer be treated due to toxicity of prior treatment, and thus succumb to the disease. Cellular therapies represent a novel approach with a unique mechanism of action against myeloma with the potential to defeat drug resistance and achieve long-term remissions. Genetic modification of cells to express a novel receptor with tumor antigen specificity is currently being explored in myeloma. Chimeric antigen receptor gene-modified T-cells (CAR T-cells) have shown to be the most promising approach so far. CAR T-cells have shown to induce durable complete remissions in other advanced hematologic malignancies like acute lymphocytic leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). With this background, significant efforts are underway to develop CAR-based therapies for MM. Currently, several antigen targets, including CD138, CD19, immunoglobulin kappa (Ig-Kappa) and B-cell maturation antigen (BCMA), are being used in clinical trials to treat myeloma patients. Some of these trials have shown promising results, especially in terms of response rates. However, the absence of a plateau is observed in most studies which correlates with the absence of durable remissions. Therefore, several potential limitations such as lack of effectiveness, off-tumor toxicities, and antigen loss or interference with soluble proteins could hamper the efficacy of CAR T-cells in myeloma. In this review, we will focus on clinical outcomes reported with CAR T-cells in myeloma, as well as on CAR T-cell limitations and how to overcome them with next generation of CAR T-cells.


Assuntos
Imunoterapia Adotiva/métodos , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos , Humanos
9.
Front Immunol ; 9: 1971, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233577

RESUMO

The relevance of the immune system in cancer has long been studied. Autologous adoptive T cell therapies, based on the use of tumor infiltrating lymphocytes (TILs), have made great progress in recent years for the treatment of solid tumors, especially melanoma. However, further work is needed to isolate tumor-reactive T cells among patients diagnosed with hematologic malignancies. The dynamics of the interaction between T cells and antigen presenting cells (APC) dictate the quality of the immune responses. While stable joints between target cells and T lymphocytes lead to the induction of T cell activation and immune response, brief contacts contribute to the induction of immune-tolerance. Taking advantage of the strong interaction between target cell and activated T-cells, we show the feasibility to identify and isolate tumor-specific cytotoxic T lymphocytes (CTLs) from acute myeloid leukemia (AML) patients by flow cytometry. Using this technology, CTLs bound through T cell receptor (TCR) to tumor cells can be identified in peripheral blood and bone marrow and subsequently selected and isolated by FACS-based cell sorting. These CTLs display higher percentage of effector cells and marked cytotoxic activity against AML blasts. In conclusion, we have developed a new procedure to identify and select specific cytotoxic T cells in patients diagnosed with acute myeloid leukemia.


Assuntos
Vacinas Anticâncer/imunologia , Citometria de Fluxo/métodos , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T Citotóxicos/imunologia , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Separação Celular , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Tolerância Imunológica , Vigilância Imunológica , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/transplante , Evasão Tumoral , Microambiente Tumoral
11.
Int J Cancer ; 140(3): 674-685, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27778331

RESUMO

Although hematopoietic and immune system show high levels of the cannabinoid receptor CB2, the potential effect of cannabinoids on hematologic malignancies has been poorly determined. Here we have investigated their anti-tumor effect in multiple myeloma (MM). We demonstrate that cannabinoids induce a selective apoptosis in MM cell lines and in primary plasma cells of MM patients, while sparing normal cells from healthy donors, including hematopoietic stem cells. This effect was mediated by caspase activation, mainly caspase-2, and was partially prevented by a pan-caspase inhibitor. Their pro-apoptotic effect was correlated with an increased expression of Bax and Bak, a decrease of Bcl-xL and Mcl-1, a biphasic response of Akt/PKB and an increase in the levels of ceramide in MM cells. Inhibition of ceramide synthesis partially prevented apoptosis, indicating that these sphingolipids play a key role in the pro-apoptotic effect of cannabinoids in MM cells. Remarkably, blockage of the CB2 receptor also inhibited cannabinoid-induced apoptosis. Cannabinoid derivative WIN-55 enhanced the anti-myeloma activity of dexamethasone and melphalan overcoming resistance to melphalan in vitro. Finally, administration of cannabinoid WIN-55 to plasmacytoma-bearing mice significantly suppressed tumor growth in vivo. Together, our data suggest that cannabinoids may be considered as potential therapeutic agents in the treatment of MM.


Assuntos
Antineoplásicos/farmacologia , Canabinoides/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Caspase 2/metabolismo , Linhagem Celular Tumoral , Ceramidas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo , Proteína bcl-X/metabolismo
12.
PLoS One ; 11(4): e0154219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27124285

RESUMO

Generating the immune response requires the discrimination of peptides presented by the human leukocyte antigen complex (HLA) through the T-cell receptor (TCR). However, how a single amino acid substitution in the antigen bonded to HLA affects the response of T cells remains uncertain. Hence, we used molecular dynamics computations to analyze the molecular interactions between peptides, HLA and TCR. We compared immunologically reactive complexes with non-reactive and weakly reactive complexes. MD trajectories were produced to simulate the behavior of isolated components of the various p-HLA-TCR complexes. Analysis of the fluctuations showed that p-HLA binding barely restrains TCR motions, and mainly affects the CDR3 loops. Conversely, inactive p-HLA complexes displayed significant drop in their dynamics when compared with its free versus ternary forms (p-HLA-TCR). In agreement, the free non-reactive p-HLA complexes showed a lower amount of salt bridges than the responsive ones. This resulted in differences between the electrostatic potentials of reactive and inactive p-HLA species and larger vibrational entropies in non-elicitor complexes. Analysis of the ternary p-HLA-TCR complexes also revealed a larger number of salt bridges in the responsive complexes. To summarize, our computations indicate that the affinity of each p-HLA complex towards TCR is intimately linked to both, the dynamics of its free species and its ability to form specific intermolecular salt-bridges in the ternary complexes. Of outstanding interest is the emerging concept of antigen reactivity involving its interplay with the HLA head sidechain dynamics by rearranging its salt-bridges.


Assuntos
Antígenos HLA/química , Simulação de Dinâmica Molecular , Peptídeos/química , Receptores de Antígenos de Linfócitos T/química , Sequência de Aminoácidos , Apresentação de Antígeno , Sítios de Ligação , Antígenos HLA/imunologia , Humanos , Peptídeos/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Antígenos de Linfócitos T/imunologia , Eletricidade Estática , Termodinâmica
13.
Am J Cancer Res ; 5(1): 386-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25628947

RESUMO

Memory B cells (MBCs) remain in a quiescent state for years, expressing pro-survival and anti-apoptotic factors while repressing cell proliferation and activation genes. During their differentiation into plasma cells (PCs), their expression pattern is reversed, with a higher expression of genes related to cell proliferation and activation, and a lower expression of pro-survival genes. To determine whether myelomatous PCs (mPCs) share characteristics with normal PCs and MBCs and to identify genes involved in the pathophysiology of multiple myeloma (MM), we compared gene expression patterns in these three cell sub-types. We observed that mPCs had features intermediate between those of MBCs and normal PCs, and identified 3455 genes differentially expressed in mPCs relative to normal PCs but with a similar expression pattern to that in MBCs. Most of these genes are involved in cell death and survival, cell growth and proliferation and protein synthesis. According to our findings, mPCs have a gene expression pattern closer to a MBC than a PC with a high expression of genes involved in cell survival. These genes should be physiologically inactivated in the transit from MBC to PC, but remain overexpressed in mPCs and thus may play a role in the pathophysiology of the disease.

14.
Immunology ; 2014 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-25196729

RESUMO

Memory B cells (MBCs) have a very long life-span as compared to naïve B cells (NBCs), remaining viable for years. It could predispose them to suffer misbalances in the gene expression pattern at the long term, which might be involved in the development of age-related B-cell disorders. In order to identify genes whose expression might change during life, we analyzed the gene expression patterns of CD27- NBCs versus CD27+ MBCs in young and old subjects. Using microarray assays we observed that the expression pattern of CD27- NBCs versus CD27+ MBCs is significantly different. Furthermore, in order to evaluate the age effect, we compared the gene expression pattern of young versus aged subjects in both cell populations. Interestingly, we did not find significant differences in the CD27- NBC population between young and aged individuals, whereas we found 925 genes differentially expressed in CD27+ MBCs. Among these genes, 193 were also differentially expressed in CD27+ MBCs as compared to CD27- NBCs, most of them involved in cell survival, cell growth and proliferation, cellular development and gene expression. We conclude that gene expression profiles of CD27- NBCs and CD27+ MBCs are different. Moreover, whereas the gene expression pattern of CD27+ MBCs varies with age, the same does not happen in CD27- NBCs. This suggests that MBCs undergo time-dependent changes which could underlie a higher susceptibility to dysfunction with age. This article is protected by copyright. All rights reserved.

15.
Cytotherapy ; 15(6): 673-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23522868

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) are multipotent stem cells with immunosuppressive properties. Nevertheless, it has been previously reported that MSCs might also trigger the immune response. We studied whether MSCs may act as carriers, capturing antigens that can be endocytosed by antigen-presenting cells later on. METHODS: We measured the cellular uptake of mannose receptor-mediated fluid phase macropinocytosis, assessed as cellular uptake of fluorescein isothiocyanate-dextran, and PKH-67-labeled cell lysates as a surrogate marker for antigen capture among dendritic cells (DCs, positive control), T lymphocytes (negative control) and MSCs. RESULTS: All experiments confirmed that MCSs displayed pinocytic and endocytic capacities, which were lower than those observed for DCs but significantly higher than those observed for T cells. We also demonstrated that MSCs release previously endocytosed antigens, which subsequently can be captured by DCs. CONCLUSIONS: MSCs have the ability to capture and release antigens.


Assuntos
Endocitose , Antígenos HLA-D/metabolismo , Células-Tronco Mesenquimais/citologia , Pinocitose , Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Antígenos HLA-D/imunologia , Humanos , Imunossupressores , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Lectinas de Ligação a Manose/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...