Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Artif Intell Med ; 110: 101976, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33250148

RESUMO

Breast cancer is the most frequent cancer in women and the second most frequent overall after lung cancer. Although the 5-year survival rate of breast cancer is relatively high, recurrence is also common which often involves metastasis with its consequent threat for patients. DNA methylation-derived databases have become an interesting primary source for supervised knowledge extraction regarding breast cancer. Unfortunately, the study of DNA methylation involves the processing of hundreds of thousands of features for every patient. DNA methylation is featured by High Dimension Low Sample Size which has shown well-known issues regarding feature selection and generation. Autoencoders (AEs) appear as a specific technique for conducting nonlinear feature fusion. Our main objective in this work is to design a procedure to summarize DNA methylation by taking advantage of AEs. Our proposal is able to generate new features from the values of CpG sites of patients with and without recurrence. Then, a limited set of relevant genes to characterize breast cancer recurrence is proposed by the application of survival analysis and a pondered ranking of genes according to the distribution of their CpG sites. To test our proposal we have selected a dataset from The Cancer Genome Atlas data portal and an AE with a single-hidden layer. The literature and enrichment analysis (based on genomic context and functional annotation) conducted regarding the genes obtained with our experiment confirmed that all of these genes were related to breast cancer recurrence.


Assuntos
Neoplasias da Mama , Metilação de DNA , Neoplasias da Mama/genética , Feminino , Genômica , Humanos , Aprendizado de Máquina , Recidiva Local de Neoplasia/genética
3.
J Biomed Inform ; 72: 33-44, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28663073

RESUMO

Breast cancer is the most common cause of cancer death in women. Today, post-transcriptional protein products of the genes involved in breast cancer can be identified by immunohistochemistry. However, this method has problems arising from the intra-observer and inter-observer variability in the assessment of pathologic variables, which may result in misleading conclusions. Using an optimal selection of preprocessing techniques may help to reduce observer variability. Deep learning has emerged as a powerful technique for any tasks related to machine learning such as classification and regression. The aim of this work is to use autoencoders (neural networks commonly used to feed deep learning architectures) to improve the quality of the data for developing immunohistochemistry signatures with prognostic value in breast cancer. Our testing on data from 222 patients with invasive non-special type breast carcinoma shows that an automatic binarization of experimental data after autoencoding could outperform other classical preprocessing techniques (such as human-dependent or automatic binarization only) when applied to the prognosis of breast cancer by immunohistochemical signatures.


Assuntos
Neoplasias da Mama/diagnóstico , Aprendizado de Máquina , Redes Neurais de Computação , Feminino , Humanos , Variações Dependentes do Observador , Prognóstico
4.
J Geophys Res Biogeosci ; 122(2): 340-353, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28405539

RESUMO

Quantifying biomass consumption and carbon release is critical to understanding the role of fires in the carbon cycle and air quality. We present a methodology to estimate the biomass consumed and the carbon released by the California Rim fire by integrating postfire airborne LiDAR and multitemporal Landsat Operational Land Imager (OLI) imagery. First, a support vector regression (SVR) model was trained to estimate the aboveground biomass (AGB) from LiDAR-derived metrics over the unburned area. The selected model estimated AGB with an R2 of 0.82 and RMSE of 59.98 Mg/ha. Second, LiDAR-based biomass estimates were extrapolated to the entire area before and after the fire, using Landsat OLI reflectance bands, Normalized Difference Infrared Index, and the elevation derived from LiDAR data. The extrapolation was performed using SVR models that resulted in R2 of 0.73 and 0.79 and RMSE of 87.18 (Mg/ha) and 75.43 (Mg/ha) for the postfire and prefire images, respectively. After removing bias from the AGB extrapolations using a linear relationship between estimated and observed values, we estimated the biomass consumption from postfire LiDAR and prefire Landsat maps to be 6.58 ± 0.03 Tg (1012 g), which translate into 12.06 ± 0.06 Tg CO2e released to the atmosphere, equivalent to the annual emissions of 2.57 million cars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...