Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36836267

RESUMO

The biomass-degrading thermophilic ascomycete fungus Thielavia terrestris Co3Bag1 produces TtCel7A, a native bifunctional cellulase/xylanase GH7 family. The purified TtCel7A, with an estimated molecular weight of 71 kDa, was biochemically characterized. TtCel7A displayed an optimal pH of 5.5 for both activities and an optimal temperature of 60 and 50 °C for cellulolytic and xylanolytic activities, respectively. The half-lives determined for cellulase activity were 140, 106, and 41 min at 50, 60, and 70 °C, respectively, whereas the half-lives observed for xylanase activity were 24, 10, and 1.4 h at 50, 60, and 70 °C, respectively. The KM and Vmax values were 3.12 mg/mL and 50 U/mg for cellulase activity and 0.17 mg/mL and 42.75 U/mg for xylanase activity. Circular dichroism analysis suggests changes in the secondary structure of TtCel7A in the presence of CMC as the substrate, whereas no modifications were observed with beechwood xylan. TtCel7A displayed the excellent capability to hydrolyze CMC, beechwood xylan, and complex substrates such as oat bran, wheat bran, and sugarcane bagasse, with glucose and cellobiose being the main products released; also, slightly less endo cellulase and xylanase activities were observed. Thus, suggesting TtCel7A has an exo- and endomode of action. Based on the characteristics of the enzyme, it might be considered a good candidate for industrial applications.

2.
Biosensors (Basel) ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354471

RESUMO

Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Materiais Biocompatíveis , DNA , Carboidratos
3.
Extremophiles ; 21(1): 175-186, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27900528

RESUMO

A hyperthermophilic and thermostable xylanase of 82 kDa (TtXynA) was purified from the culture supernatant of T. terrestris Co3Bag1, grown on carboxymethyl cellulose (CMC), and characterized biochemically. TtXynA showed optimal xylanolytic activity at pH 5.5 and at 85 °C, and retained more than 90% of its activity at a broad pH range (4.5-10). The enzyme is highly thermostable with a half-life of 23.1 days at 65 °C, and active in the presence of several metal ions. Circular dichroism spectra strongly suggest the enzyme gains secondary structures when temperature increases. TtXynA displayed higher substrate affinity and higher catalytic efficiency towards beechwood xylan than towards birchwood xylan, oat-spelt xylan, and CMC. According to its final hydrolysis products, TtXynA displays endo-/exo-activity, yielded xylobiose, an unknown oligosaccharide containing about five residues of xylose and a small amount of xylose on beechwood xylan. Finally, this report represents the description of the first fungal hyperthermophilic xylanase which is produced by T. terrestris Co3Bag1. Since TtXynA displays relevant biochemical properties, it may be a suitable candidate for biotechnological applications carried out at high temperatures, like the enzymatic pretreatment of plant biomass for the production of bioethanol.


Assuntos
Carboximetilcelulose Sódica/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Proteínas Fúngicas/metabolismo , Temperatura Alta , Microbiologia Industrial , Sordariales/enzimologia , Biomassa , Endo-1,4-beta-Xilanases/genética , Estabilidade Enzimática , Proteínas Fúngicas/genética , Sordariales/genética , Sordariales/crescimento & desenvolvimento , Sordariales/metabolismo , Especificidade por Substrato
4.
AMB Express ; 6(1): 63, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27576896

RESUMO

Serratia proteamaculans CDBB-1961, a gut symbiont from the roundheaded pine beetle Dendroctonus adjunctus, displayed strong cellulolytic activity on agar-plates with carboxymethyl cellulose (CMC) as carbon source. Automatic genome annotation of S. proteamaculans made possible the identification of a single endoglucanase encoding gene, designated spr cel8A. The predicted protein, named Spr Cel8A shows high similarity (59-94 %) to endo-1,4-ß-D-glucanases (EC 3.2.1.4) from the glycoside hydrolase family 8 (GH8). The gene spr cel8A has an ORF of 1113 bp, encoding a 371 amino acid residue protein (41.2 kDa) with a signal peptide of 23 amino acid residues. Expression of the gene spr cel8A in Escherichia coli yields a mature recombinant endoglucanase 39 kDa. Cel8A displayed optimal activity at pH 7.0 and 40 °C, with a specific activity of 0.85 U/mg. The enzyme was stable at pH from 4 to 8.5, retaining nearly 40-80 % of its original activity, and exhibited a half-life of 8 days at 40 °C. The K m and V max values for Spr Cel8A were 6.87 mg/ml and 3.5 µmol/min/mg of protein, respectively, using CMC as substrate. The final principle products of Spr Cel8A-mediated hydrolysis of CMC were cellobiose, cello oligosaccharides and a small amount of glucose, suggesting that Spr Cel8A is an endo-ß-1,4-glucanase manifesting exo-activity. This is the first report regarding the functional biochemical and molecular characterization of an endoglucanase from S. proteamaculans, found in the gut-associated bacteria community of Dendroctonus bark beetles. These results contribute to improved understanding of the functional role played by this bacterium as a symbiont of bark beetles.

5.
Appl Microbiol Biotechnol ; 89(3): 799-806, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20922376

RESUMO

In Streptomyces coelicolor, the sco2127 gene is located upstream of the gene encoding for glucose kinase. This region restores sensitivity to carbon catabolite repression (CCR) of Streptomyces peucetius var. caesius mutants, resistant to 2-deoxyglucose (Dog(R)). In order to search for the possible mechanisms behind this effect, sco2127 was overexpressed and purified for protein-protein interaction studies. SCO2127 was detected during the late growth phase of S. coelicolor grown in a complex media supplemented with 100 mM glucose. Pull-down assays using crude extracts from S. coelicolor grown in the same media, followed by far-western blotting, allowed detection of two proteins bound to SCO2127. The proteins were identified by MALDI-TOF mass spectrometry as SCO5113 and SCO2582. SCO5113 (BldKB) is a lipoprotein ABC-type permease (∼66 kDa) involved in mycelium differentiation by allowing the transport of the morphogenic oligopeptide Bld261. SCO2582, is a putative membrane metalloendopeptidase (∼44 kDa) of unknown function. In agreement with the possible role of SCO2127 in mycelium differentiation, delayed aerial mycelium septation and sporulation was observed when S. coelicolor A3(2) was grown in the presence of elevated glucose concentrations (100 mM), an effect not seen in a Δ-sco2127 mutant derived from it. We speculate that SCO2127 might represent a key factor in CCR of mycelium differentiation by interacting with BldKB.


Assuntos
Proteínas de Bactérias/metabolismo , Repressão Catabólica , Mapeamento de Interação de Proteínas , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Far-Western Blotting , Meios de Cultura/química , Deleção de Genes , Ligação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Antibiot (Tokyo) ; 63(8): 442-59, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20664603

RESUMO

Antibiotics are low-molecular-mass products of secondary metabolism, nonessential for the growth of producing organisms, but very important for human health. They have unusual structures and are most often formed during the late growth phase of the producing microorganisms. Their production arises from intracellular intermediates, which are condensed into more complex structures through defined biochemical pathways. Their synthesis can be influenced by manipulating the type and concentration of nutrients formulating the culture media. Among them, the effect of the carbon source has been the subject of continuous studies for both industry and research groups. Glucose and other carbohydrates have been reported to interfere with antibiotic synthesis and this effect depends on the rapid utilization of the preferred carbon source. Different mechanisms have been described in bacteria and fungi to explain the negative effects of carbon catabolites on antibiotic production. They show important differences depending on the microbe being considered. Their understanding and manipulation have been useful for both perfecting fermentation conditions to produce anti-infectives and for strain improvement. To improve the production of antibiotics, carbon source repression can be decreased or abolished by mutations resulting in antimetabolite resistance. Enzymes reported as regulated by the carbon source have been used as targets for strain improvement. During the last few years, important advances have been reported elucidating the essential aspects of carbon source regulation on antibiotic production at biochemical and molecular levels. The aim of this review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.


Assuntos
Antibacterianos/biossíntese , Carbono/metabolismo , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Streptomyces/metabolismo , Biotecnologia/métodos , Engenharia Genética/métodos , Redes e Vias Metabólicas/genética
7.
Crit Rev Microbiol ; 36(2): 146-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20210692

RESUMO

Microbial secondary metabolites are low molecular mass products, not essential for growth of the producing cultures, but very important for human health. They include antibiotics, antitumor agents, cholesterol-lowering drugs, and others. They have unusual structures and are usually formed during the late growth phase of the producing microorganisms. Its synthesis can be influenced greatly by manipulating the type and concentration of the nutrients formulating the culture media. Among these nutrients, the effect of the carbon sources has been the subject of continuous studies for both, industry and research groups. Different mechanisms have been described in bacteria and fungi to explain the negative carbon catabolite effects on secondary metabolite production. Their knowledge and manipulation have been useful either for setting fermentation conditions or for strain improvement. During the last years, important advances have been reported on these mechanisms at the biochemical and molecular levels. The aim of the present review is to describe these advances, giving special emphasis to those reported for the genus Streptomyces.


Assuntos
Bactérias/metabolismo , Produtos Biológicos/biossíntese , Carbono/metabolismo , Fungos/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Produtos Biológicos/farmacologia , Humanos
8.
J Ind Microbiol Biotechnol ; 36(5): 649-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19212786

RESUMO

It is known that Streptomyces peucetius var. caesius mutants resistant to 2-deoxyglucose (Dog(R)) exhibit glucose transport deficiency, low glucose kinase (Glk) activity and insensitivity to carbon catabolite repression (CCR). This phenotype can be pleiotropically complemented by a 576-bp gene encoding SCO2127 from Streptomyces coelicolor, suggesting the participation of this protein in the CCR process. In the present work, the sco2127 region was subcloned into pQE30 and its transcription product (SCO2127-His(6)) overexpressed. This procedure allowed purification of SCO2127 (with a Ni-sepharose resin) and production of polyclonal antibodies. In western blot assays, the antibodies gave a positive reaction against protein extracts from both S. coelicolor and S. peucetius var. caesius, appearing as a single band of 34 kDa. No protein was detected using extracts from a S. coelicolor mutant lacking the sco2127 gene (Deltasco2127). In agreement with its possible involvement in the CCR process, SCO2127 was detected during the logarithmic growth phase of S. coelicolor grown in minimal medium supplemented with 50 and 100 mM glucose. In addition, when 50 mM glucose was utilized, SCO2127 and residual glucose concentration simultaneously decreased at later stages of the microbial growth.


Assuntos
Proteínas de Bactérias/metabolismo , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Glucose/metabolismo , Peso Molecular , Streptomyces coelicolor/química , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...