Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1863(6 Pt A): 1319-33, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27033517

RESUMO

All cells are delimited by biological membranes, which are consequently a primary target of stress-induced damage. Cold alters membrane functionality by decreasing lipid fluidity and the activity of membrane proteins. In Saccharomyces cerevisiae, evidence links sphingolipid homeostasis and membrane phospholipid asymmetry to the activity of the Ypk1/2 proteins, the yeast orthologous of the mammalian SGK1-3 kinases. Their regulation is mediated by different protein kinases, including the PDK1 orthologous Pkh1/2p, and requires the function of protein effectors, among them Nce102p, a component of the sphingolipid sensor machinery. Nevertheless, the mechanisms and the actors involved in Pkh/Ypk regulation remain poorly defined. Here, we demonstrate that Sng1, a transmembrane protein, is an effector of the Pkh/Ypk module and identify the phospholipid asymmetry as key for yeast cold adaptation. Overexpression of SNG1 impairs phospholipid flipping, reduces reactive oxygen species (ROS) and improves, in a Pkh-dependent manner, yeast growth in myriocin-treated cells, suggesting that excess Sng1p stimulates the Pkh/Ypk signalling. Furthermore, we link these effects to the association of Sng1p with Nce102p. Indeed, we found that Sng1p interacts with Nce102p both physically and genetically. Moreover, mutant nce102∆ sng1∆ cells show features of impaired Pkh/Ypk signalling, including increased ROS accumulation, reduced life span and defects in Pkh/Ypk-controlled regulatory pathways. Finally, myriocin-induced hyperphosphorylation of Ypk1p and Orm2p, which controls sphingolipid homeostasis, does not occur in nce102∆ sng1∆ cells. Hence, both Nce102p and Sng1p participate in a regulatory circuit that controls the activity of the Pkh/Ypk module and their function is required in response to sphingolipid status.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Bacteriocinas/farmacologia , Temperatura Baixa , Ácidos Graxos Monoinsaturados/farmacologia , Polarização de Fluorescência , Quinase 3 da Glicogênio Sintase/genética , Homeostase/efeitos dos fármacos , Immunoblotting , Proteínas de Membrana/genética , Microscopia Confocal , Modelos Biológicos , Mutação , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica , Espécies Reativas de Oxigênio , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Esfingolipídeos/antagonistas & inibidores
2.
FEBS Lett ; 589(16): 2163-8, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26140985

RESUMO

We examined the physiological significance of the nuclear versus cytosolic localization of the MAPK Hog1p in the ability of yeast cells to cope with osmotic and ER (endoplasmic reticulum) stress. Our results indicate that nuclear import of Hog1p is not critical for osmoadaptation. Plasma membrane-anchored Hog1p is still able to induce increased expression of GPD1 and glycerol accumulation. This is a key osmoregulatory event, although a small production of the osmolyte coupled with the nuclear import of Hog1p is sufficient to provide osmoresistance. On the contrary, the nuclear activity of Hog1p is dispensable for ER stress adaptation.


Assuntos
Adaptação Fisiológica , Núcleo Celular/enzimologia , Citosol/enzimologia , Estresse do Retículo Endoplasmático , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Resposta a Proteínas não Dobradas , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Glicerol/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Mutantes/metabolismo , Concentração Osmolar , Osmorregulação , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Solução Salina Hipertônica/química , Sorbitol/química , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
3.
Appl Environ Microbiol ; 77(21): 7517-25, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908639

RESUMO

A decrease in ambient temperature alters membrane functionality and impairs the proper interaction between the cell and its external milieu. Understanding how cells adapt membrane properties and modulate the activity of membrane-associated proteins is therefore of major interest from both the basic and the applied points of view. Here, we have isolated multicopy suppressors of the cold sensitivity phenotype of a trp1 strain of Saccharomyces cerevisiae. Three poorly characterized genes, namely, ALY2 encoding the endocytic adaptor, CAJ1 encoding the J protein, and UBP13 encoding the ubiquitin C-terminal hydrolase, were identified as mediating increased growth at 12°C of both Trp⁻ and Trp+ yeast strains. This effect was likely due to the downregulation of cold-instigated degradation of nutrient permeases, since it was missing from cells of the rsp5Δ mutant strain, which contains a point mutation in the gene encoding ubiquitin ligase. Indeed, we found that 12°C treatments reduced the level of several membrane transporters, including Tat1p and Tat2p, two yeast tryptophan transporters, and Gap1, the general amino acid permease. We also found that the lack of Rsp5p increased the steady state level of Tat1p and Tat2p and that ALY2-engineered cells grown at 12°C had higher Tat2p and Gap1p abundance. Nevertheless, the high copy number of ALY2 or UBP13 improved cold growth even in the absence of Tat2p. Consistent with this, ALY2- and UBP13-engineered cells of the industrial QA23 strain grew faster and produced more CO2 at 12°C than did the parental when maltose was used as the sole carbon source. Hence, the multicopy suppressors isolated in this work appear to contribute to the correct control of the cell surface protein repertoire and their engineering might have potential biotechnological applications.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/fisiologia , Ubiquitinação , Temperatura Baixa , Proteínas de Membrana/metabolismo , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
J Biol Chem ; 285(26): 20088-96, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20430884

RESUMO

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) triggers the so-called unfolded protein response (UPR), a conserved signaling pathway that drives the transcription of genes such as chaperones and folding enzymes. Nevertheless, the activity of the UPR accounts only for a part of the gene expression program activated upon ER stress. Moreover, the mechanism(s) for how cells adapt and survive to this stress are largely unknown. Here, we show that the yeast high osmolarity glycerol (HOG) pathway plays a role in ER stress resistance. Strains lacking the MAPK Hog1p displayed sensitivity to tunicamycin or beta-mercaptoethanol, whereas hyperactivation of the pathway enhanced their resistance. However, these effects were not due to Hog1p-mediated regulation of the UPR. Northern blot analysis demonstrated that Hog1p controls the tunicamycin-induced transcriptional change of GPD1 and that wild-type cells exposed to the drug accumulated glycerol in a Hog1p-dependent manner. Consistent with this, deletion of genes involved in glycerol synthesis caused increased sensitivity to tunicamycin, whereas overexpression of GPD1 provided higher tolerance to both wild-type and hog1Delta mutant cells. Quite remarkably, these effects were mediated by the basal activity of the MAPK because tunicamycin exposure does not trigger the phosphorylation of Hog1p or its nuclear import. Hence, our results describe new aspects of the yeast response to ER stress and identify additional functions of glycerol and the Hog1p MAPK to provide stress resistance.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tunicamicina/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Western Blotting , Divisão Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteínas Fúngicas/genética , Glicerol/metabolismo , Proteínas de Choque Térmico HSP70/genética , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Fosforilação/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...