Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 610, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886650

RESUMO

Understanding the mechanisms underlying alcohol metabolism and its regulation, including the effect of polymorphisms in alcohol-metabolizing enzymes, is crucial for research on Fetal Alcohol Spectrum Disorders. The aim of this study was to identify specific single nucleotide polymorphisms in key alcohol-metabolizing enzymes in a cohort of 71 children, including children with fetal alcohol syndrome, children prenatally exposed to ethanol but without fetal alcohol spectrum disorder, and controls. We hypothesized that certain genetic variants related to alcohol metabolism may be fixed in these populations, giving them a particular alcohol metabolism profile. In addition, the difference in certain isoforms of these enzymes determines their affinity for alcohol, which also affects the metabolism of retinoic acid, which is key to the proper development of the central nervous system. Our results showed that children prenatally exposed to ethanol without fetal alcohol spectrum disorder traits had a higher frequency of the ADH1B*3 and ADH1C*1 alleles, which are associated with increased alcohol metabolism and therefore a protective factor against circulating alcohol in the fetus after maternal drinking, compared to FAS children who had an allele with a lower affinity for alcohol. This study also revealed the presence of an ADH4 variant in the FAS population that binds weakly to the teratogen, allowing increased circulation of the toxic agent and direct induction of developmental abnormalities in the fetus. However, both groups showed dysregulation in the expression of genes related to the retinoic acid pathway, such as retinoic acid receptor and retinoid X receptor, which are involved in the development, regeneration, and maintenance of the nervous system. These findings highlight the importance of understanding the interplay between alcohol metabolism, the retinoic acid pathway and genetic factors in the development of fetal alcohol syndrome.


Assuntos
Álcool Desidrogenase , Transtornos do Espectro Alcoólico Fetal , Polimorfismo de Nucleotídeo Único , Receptores do Ácido Retinoico , Humanos , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Estudos de Casos e Controles , Feminino , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Masculino , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Criança , Etanol/metabolismo , Gravidez , Pré-Escolar , Alelos
2.
Antioxidants (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237934

RESUMO

Prenatal alcohol exposure affects the cardiovascular health of the offspring. Epigallocatechin-3-gallate (EGCG) may be a protective agent against it, but no data are available regarding its impact on cardiac dysfunction. We investigated the presence of cardiac alterations in mice prenatally exposed to alcohol and the effect of postnatal EGCG treatment on cardiac function and related biochemical pathways. C57BL/6J pregnant mice received 1.5 g/kg/day (Mediterranean pattern), 4.5 g/kg/day (binge pattern) of ethanol, or maltodextrin until Day 19 of pregnancy. Post-delivery, treatment groups received EGCG-supplemented water. At post-natal Day 60, functional echocardiographies were performed. Heart biomarkers of apoptosis, oxidative stress, and cardiac damage were analyzed by Western blot. BNP and Hif1α increased and Nrf2 decreased in mice prenatally exposed to the Mediterranean alcohol pattern. Bcl-2 was downregulated in the binge PAE drinking pattern. Troponin I, glutathione peroxidase, and Bax increased in both ethanol exposure patterns. Prenatal alcohol exposure led to cardiac dysfunction in exposed mice, evidenced by a reduced ejection fraction, left ventricle posterior wall thickness at diastole, and Tei index. EGCG postnatal therapy restored the physiological levels of these biomarkers and improved cardiac dysfunction. These findings suggest that postnatal EGCG treatment attenuates the cardiac damage caused by prenatal alcohol exposure in the offspring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...