Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 939: 10-25, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27639140

RESUMO

Biogenic amines (BA) are generally considered as a food hazard, even though there is not a threshold for these biomolecules in the European legislation, except for histamine in fishery products. These compounds are formed during the storage and processing of certain foods through microbiological activity, and when present in high concentrations, could have toxicological effects, causing health problems in consumers, especially to sensitive persons. This fact, in addition to the economical concern involved, makes it necessary to control the amounts of biogenic amines in foods. For all these reasons, literature on biogenic amines in different food products, especially in fermented beverages, is extensive. This review provides an overview of the most recent trends in the determination of biogenic amines in fermented beverages focusing on novelty, improvement and optimization of analytical methods. Hence, the different sample treatment procedures (including derivatization), the most important analytical techniques and the most frequent applications are described and discussed. Although biogenic amines have been determined in wine and other fermented beverages for decades, new advancements and technical possibilities have allowed to increase the accuracy and sensitivity of analytical methods, in order to overcome the challenges posed by the complex matrices and their high intrinsic variability. Thus, the different purposes of BA determination (food safety, production process or food microbiology research) and the most widely employed analytical techniques have been reviewed.


Assuntos
Bebidas/análise , Aminas Biogênicas/análise , Técnicas de Química Analítica/métodos , Fermentação , Contaminação de Alimentos/análise , Bebidas/microbiologia , Humanos
2.
ScientificWorldJournal ; 2014: 394671, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24574887

RESUMO

The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either "fast" or "traditional"), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.


Assuntos
Ácido Acético/metabolismo , Bactérias/metabolismo , Microbiologia de Alimentos , Vinho/microbiologia , Bactérias/crescimento & desenvolvimento , Oxirredução
3.
J Pineal Res ; 53(3): 219-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22515683

RESUMO

Melatonin is a bioactive compound that is present in wine because it is contained in vinification grapes and synthesized by yeast during alcoholic fermentation. The purpose of this study was to determine the capacity of various Saccharomyces strains to form melatonin during its growth and alcoholic fermentation. A selection of yeasts including six S. cerevisiae (Lalvin CLOS, Lalvin ICV-D254, Enoferm QA23 Viniferm ARM, Viniferm RVA, and Viniferm TTA), one S. uvarum (Lalvin S6U) and one S. cerevisiae var. bayanus (Uvaferm BC) were tested to determine whether they produce melatonin in yeast extract peptose dextrose and synthetic must media in a variety of conditions. Two S. cerevisiae strains (ARM, and QA23), the S. uvarum and the S. cerevisiae var. bayanus, synthesized melatonin. The conditions in which they did so, however, were different: the QA23 strain produced melatonin best in a medium with a low concentration of reducing sugars and Lalvin S6U and Uvaferm BC required a synthetic must under fermentation conditions. Melatonin synthesis largely depended on the growth phase of the yeasts and the concentration of tryptophan, reducing sugars and the growth medium. These results indicate that melatonin may have a role as a yeast growth signal molecule.


Assuntos
Melatonina/biossíntese , Saccharomyces cerevisiae/metabolismo , Meios de Cultura , Fermentação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Vinho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...