Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433442

RESUMO

A Kalman filter can be used to fill space-state reconstruction dynamics based on knowledge of a system and partial measurements. However, its performance relies on accurate modeling of the system dynamics and a proper characterization of the uncertainties, which can be hard to obtain in real-life scenarios. In this work, we explore how the values of a Kalman gain matrix can be estimated by using spiking neural networks through a combination of biologically plausible neuron models with spike-time-dependent plasticity learning algorithms. The performance of proposed neural architecture is verified with simulations of some representative nonlinear systems, which show promising results. This approach traces a path for its implementation in neuromorphic analog hardware that can learn and reconstruct partial and changing dynamics of a system without the massive power consumption that is typically needed in a Von Neumann-based computer architecture.


Assuntos
Algoritmos , Redes Neurais de Computação , Neurônios/fisiologia , Computadores , Sistemas Computacionais
2.
Front Neurorobot ; 16: 905313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770276

RESUMO

Noise management associated with input signals in sensor devices arises as one of the main problems limiting robot control performance. This article introduces a novel neuromorphic filter model based on a leaky integrate and fire (LIF) neural model cell, which encodes the primary information from a noisy input signal and delivers an output signal with a significant noise reduction in practically real-time with energy-efficient consumption. A new approach for neural decoding based on the neuron-cell spiking frequency is introduced to recover the primary signal information. The simulations conducted on the neuromorphic filter demonstrate an outstanding performance of white noise rejecting while preserving the original noiseless signal with a low information loss. The proposed filter model is compatible with the CMOS technology design methodologies for implementing low consumption smart sensors with applications in various fields such as robotics and the automotive industry demanded by Industry 4.0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...