Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1092179, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875995

RESUMO

Campylobacter (C.) jejuni is a zoonotic bacterium of public health significance. The present investigation was designed to assess the epidemiology and genetic heterogeneity of C. jejuni recovered from commercial turkey farms in Germany using whole-genome sequencing. The Illumina MiSeq® technology was used to sequence 66 C. jejuni isolates obtained between 2010 and 2011 from commercial meat turkey flocks located in ten German federal states. Phenotypic antimicrobial resistance was determined. Phylogeny, resistome, plasmidome and virulome profiles were analyzed using whole-genome sequencing data. Genetic resistance markers were identified with bioinformatics tools (AMRFinder, ResFinder, NCBI and ABRicate) and compared with the phenotypic antimicrobial resistance. The isolates were assigned to 28 different sequence types and 11 clonal complexes. The average pairwise single nucleotide-polymorphisms distance of 14,585 SNPs (range: 0-26,540 SNPs) revealed a high genetic distinction between the isolates. Thirteen virulence-associated genes were identified in C. jejuni isolates. Most of the isolates harbored the genes flaA (83.3%) and flaB (78.8%). The wlaN gene associated with the Guillain-Barré syndrome was detected in nine (13.6%) isolates. The genes for resistance to ampicillin (bla OXA), tetracycline [tet(O)], neomycin [aph(3')-IIIa], streptomycin (aadE) and streptothricin (sat4) were detected in isolated C. jejuni using WGS. A gene cluster comprising the genes sat4, aph(3')-IIIa and aadE was present in six isolates. The single point mutation T86I in the housekeeping gene gyrA conferring resistance to quinolones was retrieved in 93.6% of phenotypically fluoroquinolone-resistant isolates. Five phenotypically erythromycin-susceptible isolates carried the mutation A103V in the gene for the ribosomal protein L22 inferring macrolide resistance. An assortment of 13 ß-lactam resistance genes (bla OXA variants) was detected in 58 C. jejuni isolates. Out of 66 sequenced isolates, 28 (42.4%) carried plasmid-borne contigs. Six isolates harbored a pTet-like plasmid-borne contig which carries the tet(O) gene. This study emphasized the potential of whole-genome sequencing to ameliorate the routine surveillance of C. jejuni. Whole-genome sequencing can predict antimicrobial resistance with a high degree of accuracy. However, resistance gene databases need curation and updates to revoke inaccuracy when using WGS-based analysis pipelines for AMR detection.

2.
Microorganisms ; 11(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36677417

RESUMO

The cattle-adapted serovar Salmonella Dublin (S. Dublin) causes enteritis and systemic diseases in animals. In the German federal state Schleswig-Holstein, S. Dublin is the most important serovar in cattle indicating an endemic character of the infection. To gain information on dissemination and routes of infection, whole-genome sequencing (WGS) was used to explore the genetic traits of 78 S. Dublin strains collected over a period of six years. The phylogeny was analysed using core-genome single nucleotide polymorphisms (cgSNPs). Genomic clusters at 100, 15 and 1 cgSNPs were selected for molecular analysis. Important specific virulence determinants were detected in all strains but multidrug resistance in S. Dublin organisms was not found. Using 15 cgSNPs epidemiological links between herds were identified, clusters at 1 cgSNPs provided clear evidence on both persistence of S. Dublin at single farms in consecutive years and transmission of the organisms between herds in different distances. A possible risk factor for the repeated occurrence of S. Dublin in certain districts of Schleswig-Holstein might be the spreading of manure on pastures and grassland. Effective control of S. Dublin requires farm-specific analysis of the management supplemented by WGS of outbreak causing S. Dublin strains to clearly identify routes of infection.

3.
Front Vet Sci ; 8: 705044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513973

RESUMO

Nontyphoidal Salmonella (NTS) is the most reported cause of bacterial foodborne zoonoses in Vietnam, and contaminated pork is one of the main sources of human infection. In recent years, the prevalence of NTS carrying multiple antimicrobial resistance genes (ARGs) have been increased. The genomic characterization along the pig value chain and the identification of ARGs and plasmids have the potential to improve food safety by understanding the dissemination of ARGs from the farm to the table. We report an analysis of 13 S. Derby and 10 S. Rissen isolates, collected in 2013 at different stages in Vietnamese slaughterhouses and markets. VITEK 2 Compact System was used to characterize the phenotypical antimicrobial resistance of the isolates. In addition, whole-genome sequencing (WGS) was used to detect ARGs and plasmids conferring multidrug resistance. Whole genome single nucleotide polymorphism typing was used to determine the genetic diversity of the strains and the spread of ARGs along the pig value chain. Altogether, 86.9% (20/23) of the samples were resistant to at least one antibiotic. Resistance to ampicillin was most frequently detected (73.9%), followed by piperacillin and moxifloxacin (both 69.6%). At least one ARG was found in all strains, and 69.6% (16/23) were multidrug-resistant (MDR). The observed phenotype and genotype of antimicrobial resistance were not always concordant. Plasmid replicons were found in almost all strains [95.6% (22/23)], and the phylogenetic analysis detected nine clusters (S. Derby, n = 5; S. Rissen, n = 4). ARGs and plasmid content were almost identical within clusters. We found six MDR IncHI1s with identical plasmid sequence type in strains of different genetic clusters at the slaughterhouse and the market. In conclusion, high rates of multidrug resistance were observed in Salmonella strains from Vietnam in 2013. Genomic analysis revealed many resistance genes and plasmids, which have the potential to spread along the pig value chain from the slaughterhouse to the market. This study pointed out that bioinformatics analyses of WGS data are essential to detect, trace back, and control the MDR strains along the pig value chain. Further studies are necessary to assess the more recent MDR Salmonella strains spreading in Vietnam.

4.
Microbiol Spectr ; 9(2): e0033221, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523945

RESUMO

Salmonella enterica subsp. enterica serovar Dublin is a cattle-adapted serovar that causes enteritis and systemic diseases in animals. In Germany, S. Dublin is not detected or is very rarely detected in some federal states but is endemic in certain regions. Information on detailed genetic characteristics of S. Dublin is not available. An understanding of the paths and spreading of S. Dublin within and between regions and over time is essential to establish effective control strategies. Whole-genome sequencing (WGS) and bioinformatic analysis were used to explore the genetic traits of S. Dublin and to determine their epidemiological context. Seventy-four S. Dublin strains collected in 2005 to 2018 from 10 federal states were studied. The phylogeny was analyzed using core-genome single-nucleotide polymorphisms (cgSNPs) and core-genome multilocus sequence typing. Genomic clusters at 100 cgSNPs, 40 cgSNPs, and 15 cgSNPs were selected for molecular epidemiology. WGS-based genoserotyping confirmed serotyping. Important specific virulence determinants were detected in all strains, but multidrug resistance in German S. Dublin organisms is uncommon. Use of different thresholds for cgSNP analysis enabled a broad view and also a detailed view of the occurrence of S. Dublin in Germany. Genomic clusters could be allocated nationwide, to a limited number of federal states, or to special regions only. Results indicate both persistence and spread of S. Dublin within and between federal states in short and longer time periods. However, to detect possible routes of infection or persistence of S. Dublin indicated by genomic analysis, information on the management of the cattle farms and contacts with corresponding farms are essential. IMPORTANCE Salmonella enterica subsp. enterica serovar Dublin is a bovine host-adapted serovar that causes up to 50% of all registered outbreaks of salmonellosis in cattle in Germany. S. Dublin is not detected or is only rarely detected in some federal states but has been endemic in certain regions of the country for a long time. Information on genetic traits of the causative strains is essential to determine routes of infection. WGS and bioinformatic analysis should be used to explore the genetic characteristics of S. Dublin. Combining the genomic features of S. Dublin strains with information on the management of the cattle farms concerned should enable the detection of possible routes of infection or persistence of S. Dublin. This approach is regarded as a prerequisite to developing effective intervention strategies.


Assuntos
Doenças dos Bovinos/epidemiologia , Enterite/veterinária , Genoma Bacteriano/genética , Salmonelose Animal/epidemiologia , Salmonella/genética , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Enterite/epidemiologia , Enterite/microbiologia , Alemanha/epidemiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único/genética , Salmonella/classificação , Salmonella/efeitos dos fármacos , Salmonelose Animal/microbiologia , Sorogrupo , Sequenciamento Completo do Genoma
5.
Front Microbiol ; 12: 591929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108944

RESUMO

Salmonella enterica subspecies enterica serovar Derby (S. Derby) is one of the most frequent causes for salmonellosis in humans and animals. Understanding the genetic diversity of S. Derby, as well as the nature and origin of its resistance to antimicrobial treatment are thus the key to epidemiological control and surveillance. Here, we report an analysis of 15 S. Derby strains isolated from pig and cattle in slaughterhouses across Germany (2000-2015), which belonged to multilocus sequence types (ST) ST39, ST40 and ST682. Strains were compared to publicly available S. Derby sequence data of these three STs from Germany, comprising 65 isolates collected between 2004 and 2018 from different sources (i.e., pigs, humans, cattle, wild boar, and poultry). A total of 80 sequences (ST39 = 34, ST40 = 21, and ST682 = 25) were analyzed to assess genetic diversity, to identify virulence-associated and antimicrobial resistance genes (ARGs), and to characterize plasmid content. Strains belonging to all three STs were identified in each source examined. Strains with the same ST were closely related regardless of origin. Altogether, 72.5% of the isolates carried at least one resistance gene, furthermore ST40 carried most of the ARGs and the plasmid replicons. The IncI1 replicon was detected in eleven isolates, four of them carried IncI1 plasmid ST26 with clonal complex 2. The comparison of these four isolates with an IncI1 ST26 plasmid reported in 2010 from a German pig (JX566770), showed only variations in a region carrying different ARGs and mobile genetic elements. The strains of our collection had similar genetic diversity as the strains taken from the public database. Moreover, we found that strains harboring multidrug resistant IncI plasmid were found in different animal species, indicating that S. Derby may be implicated in the spread of antimicrobial resistance among animal species. Results may contribute to the knowledge about the diversity in S. Derby in Germany, which may be useful for the future surveillance and antimicrobial resistance of this serovar.

6.
PLoS One ; 15(12): e0243130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270734

RESUMO

The increase in antimicrobial resistance in developed and developing countries is a global public health challenge. In this context ß-lactamase production is a major contributing factor to resistance globally. The aim of this study was to determine the prevalence of phenotypic and genotypic extended spectrum ß-lactamases (ESBLs) in 296 E. coli isolates recovered from diarrhoeic children younger than five years in Kano whose susceptibility profile against 7 antimicrobials had been determined. The E. coli isolates were subjected to double disc synergy test for phenotypic ESBLs detection and ESBL associated genes (blaCTX-M, blaTEM and blaSHV) were detected using conventional PCR. Phenotypically, 12.8% (38/296) E. coli isolates presented a ESBLs phenotype, with a significantly higher proportion in isolates from females compared with males (P-value = 0.024). blaCTX-M 73.3% and blaTEM 73.3% were the predominant resistance genes in the ESBLs positive E. coli (each detected in 22/30 isolates, of which 14 harboured both). In addition, 1/30 harboured blaCTX-M + blaTEM + blaSHV genes simultaneously. This study demonstrates the presence of ESBLs E. coli isolates in clinically affected children in Kano, and demonstrates the circulation of blaCTX-M and blaTEM associated with those phenotypes. Enactment of laws on prudent antibiotic use is urgently needed in Kano.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Criança , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Feminino , Genes Bacterianos , Humanos , Masculino , Nigéria/epidemiologia
7.
J Genomics ; 8: 76-79, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32817764

RESUMO

We report the first draft genome sequence of a Salmonella strain with plasmid-mediated resistance to colistin encoded by mcr-1 gene in Vietnam. Salmonella enterica subsp. enterica serovar Rissen was isolated from a Vietnamese pig slaughterhouse in 2013. We can confirm that mcr-1 gene is identical to the first reported mcr-1 gene of the Escherichia coli strain SHP45, isolated in 2015 from a Chinese pig. The plasmid containing this gene in the strain 19CS0416 was highly related (96.86% identity) to the plasmid (pHNSHP45) contained in this Chinese strain. Moreover, this plasmid was determined to be 100% identical to a plasmid (p13P477T-7) belonging to an Escherichia coli (13P477T) found in Hong Kong during the same year in pigs. Our results will aid in understanding the dissemination of mcr-1 gene in East Asia, dating back to as early as 2013.

8.
Front Microbiol ; 11: 1741, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765483

RESUMO

During the last decade, Salmonella enterica subspecies enterica serovar Infantis (S. Infantis) has become more prevalent across Europe with an increased capability to persist in broiler farms. In this study, we aimed to identify potential genetic causes for the increased emergence and longer persistence of S. Infantis in German poultry farms by high-throughput-sequencing. Broiler derived S. Infantis strains from two decades, the 1990s (n = 12) and the 2010s (n = 18), were examined phenotypically and genotypically to detect potential differences responsible for increased prevalence and persistence. S. Infantis organisms were characterized by serotyping and determining antimicrobial susceptibility using the microdilution method. Genotypic characteristics were analyzed by whole genome sequencing (WGS) to detect antimicrobial resistance and virulence genes as well as plasmids. To detect possible clonal relatedness within S. Infantis organisms, 17 accessible genomes from previous studies about emergent S. Infantis were downloaded and analyzed using complete genome sequence of SI119944 from Israel as reference. In contrast to the broiler derived antibiotic-sensitive S. Infantis strains from the 1990s, the majority of strains from the 2010s (15 out of 18) revealed a multidrug-resistance (MDR) phenotype that encodes for at least three antimicrobials families: aminoglycosides [ant(3")-Ia], sulfonamides (sul1), and tetracyclines [tet(A)]. Moreover, these MDR strains carry a virulence gene pattern missing in strains from the 1990s. It includes genes encoding for fimbriae clusters, the yersiniabactin siderophore, mercury and disinfectants resistance and toxin/antitoxin complexes. In depth genomic analysis confirmed that the 15 MDR strains from the 2010s carry a pESI-like megaplasmid with resistance and virulence gene patterns detected in the emerged S. Infantis strain SI119944 from Israel and clones inside and outside Europe. Genotyping analysis revealed two sequence types (STs) among the resistant strains from the 2010s, ST2283 (n = 13) and ST32 (n = 2). The sensitive strains from the 1990s, belong to sequence type ST32 (n = 10) and ST1032 (n = 2). Therefore, this study confirms the emergence of a MDR S. Infantis pESI-like clone of ST2283 in German broiler farms with presumably high tendency of dissemination. Further studies on the epidemiology and control of S. Infantis in broilers are needed to prevent the transfer from poultry into the human food chain.

9.
Front Public Health ; 7: 348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828054

RESUMO

Diarrheagenic Escherichia coli (DEC) is one of the leading causes of gastrointestinal disorders worldwide and an important public health challenge. DEC infection is often underdiagnosed during routine microbiological analysis, especially in resource constrained settings; the use of molecular tests could however help to determine the distribution of DEC and its clinical significance. Here, a study to assess the prevalence of DEC in clinical samples from patients <5 years attending three hospitals in Kano state, Nigeria, was carried out. Samples from 400 patients and 50 controls were collected and screened for E. coli. Compatible colonies from 248 individuals (215 patients and 33 controls) were characterized using biochemical test, a set of real-time PCRs for detection of nine virulence factors (VF: eae, bfpA, elt, est, stx1, stx2, ehxA, aggR, and invA) associated with five DEC pathotypes (EPEC, ETEC, EHEC, EAEC, and EIEC) and antimicrobial susceptibility tests. One or more VFs typical of specific pathotypes were detected in 73.8% (183/248) of the isolates, with those associated with EAEC (36.3%), ETEC (17.3%), and EPEC (6.0%) being the most common, although proportion of specific pathotypes differed between hospitals. est was the only VF detected in a significantly higher proportion in cases compared to controls (P = 0.034). Up to 86.9% of DEC were resistant to at least one class of antibiotics, with trimethoprim-sulfamethoxazole being the least effective drug (77.6% resistance). Our results demonstrate the widespread circulation of different DEC pathotypes that were highly resistant to trimethoprim-sulfamethoxazole among children in Kano state, and highlight the need of characterizing the causative agents in cases of gastrointestinal disorders.

10.
Vet Microbiol ; 230: 221-227, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30827391

RESUMO

Antimicrobial resistant bacteria are rarely detected in laying hens and the objective of this longitudinal study was to test day-old chick as a source. Four different commercial batches raised on the same farm were monitored from day-old chick to laying hens using Escherichia coli as a model. Ten colonies from each of the eight samplings per batch were tested for antimicrobial susceptibility using 14 antimicrobials. Overall (313 isolates), higher resistance percentages were detected for tetracycline (26.8%), followed by sulphonamides (16.3%), ampicillin (16.0%) and quinolones (10.9% and 9.3% for ciprofloxacin and nalidixic acid, respectively). Resistance percentages of bacteria from day-old chicks were higher than those of pullets and hens (p < 0.05) for tetracycline, sulphonamides, trimethoprim and chloramphenicol. Forty different phenotypic resistance profiles were detected, led by fully susceptible (182 isolates; 58.1%), and followed by single tetracycline (28 isolates; 8.9%) and ciprofloxacin/ nalidixic acid (11 isolates; 3.5%) profiles. By whole-genome sequencing, 17 genes and mutations of five chromosomal genes related to resistance were detected, the most frequent being tetA, blaTEM-1B and sul1. Using multilocus sequencing analysis, 58 different MLST types were detected, most of them only in a particular sample. The ST155 (27/142) was the most frequently detected, followed by ST10 (19/142) and ST48 (9/142). The fate on the farm of the detected E. coli populations in old-day chicks was not clear, but our data suggest that they did not remain in the predominant faecal population of pullets and laying hens.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Fatores Etários , Animais , Técnicas de Tipagem Bacteriana , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Feminino , Estudos Longitudinais , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Mutação , Aves Domésticas/microbiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA