Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Struct Funct ; 228(3-4): 907-920, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36995433

RESUMO

The development and survival of dopaminergic neurons are influenced by the fibroblast growth factor (FGF) pathway. Anosmin-1 (A1) is an extracellular matrix protein that acts as a major regulator of this signaling pathway, controlling FGF diffusion, and receptor interaction and shuttling. In particular, previous work showed that A1 overexpression results in more dopaminergic neurons in the olfactory bulb. Prompted by those intriguing results, in this study, we investigated the effects of A1 overexpression on different populations of catecholaminergic neurons in the central (CNS) and the peripheral nervous systems (PNS). We found that A1 overexpression increases the number of dopaminergic substantia nigra pars compacta (SNpc) neurons and alters the striosome/matrix organization of the striatum. Interestingly, these numerical and morphological changes in the nigrostriatal pathway of A1-mice did not confer an altered susceptibility to experimental MPTP-parkinsonism with respect to wild-type controls. Moreover, the study of the effects of A1 overexpression was extended to different dopaminergic tissues associated with the PNS, detecting a significant reduction in the number of dopaminergic chemosensitive carotid body glomus cells in A1-mice. Overall, our work shows that A1 regulates the development and survival of dopaminergic neurons in different nuclei of the mammalian nervous system.


Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/patologia , Substância Negra/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia , Camundongos Endogâmicos C57BL , Mamíferos
2.
Nat Neurosci ; 26(2): 226-238, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624276

RESUMO

Vaccines against SARS-CoV-2 have been shown to be safe and effective but their protective efficacy against infection in the brain is yet unclear. Here, in the susceptible transgenic K18-hACE2 mouse model of severe coronavirus disease 2019 (COVID-19), we report a spatiotemporal description of SARS-CoV-2 infection and replication through the brain. SARS-CoV-2 brain replication occurs primarily in neurons, leading to neuronal loss, signs of glial activation and vascular damage in mice infected with SARS-CoV-2. One or two doses of a modified vaccinia virus Ankara (MVA) vector expressing the SARS-CoV-2 spike (S) protein (MVA-CoV2-S) conferred full protection against SARS-CoV-2 cerebral infection, preventing virus replication in all areas of the brain and its associated damage. This protection was maintained even after SARS-CoV-2 reinfection. These findings further support the use of MVA-CoV2-S as a promising vaccine candidate against SARS-CoV-2/COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Humanos , Camundongos Transgênicos , Vacinas contra COVID-19 , Encéfalo
3.
Xenotransplantation ; 25(6): e12410, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29932254

RESUMO

BACKGROUND: The use of long-term immunosuppressive treatments on neural transplantation has been controversial during the last decades. Although nowadays there is a consensus about the necessity of maintaining a permanent state of immunosuppression to preserve the survival of cerebral grafts, little is known about the effects that chronic immunosuppression produces both on the neurodegenerative process and on transplants function. METHODS: Here, we establish a new immunosuppressive protocol, based on the discontinuous administration of CsA (15 mg/kg; s.c.) and prednisone (20 mg/kg; s.c.), to produce long-term immunosuppression in mice. Using this treatment, we analyse the effects that long-term immunosuppression induces in a chronic 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) model of parkinsonism and on the neuroprotective and neurorestorative anti-parkinsonian actions exerted by rat carotid body (CB) xenografts. RESULTS: This protocol preserves the survival of rat CB xenotransplants maintaining the general wellness of the grafted mice. Although permanent immunosuppression does not prevent the MPTP-induced cell death of nigral neurons and the consequent degeneration of dopaminergic striatal innervation, allowing for its use as Parkinson's disease (PD) model, it reduces the microglial activation and slightly declines the striatal damage. Moreover, we reported that chronic administration of immunosuppressant drugs does not alter the neuroprotective and restorative anti-parkinsonian actions of rat CB xenografts into parkinsonian mice. CONCLUSIONS: This new immunosuppressive protocol provides a new murine model to assay the long-term effects of cerebral xenografts and offer a pharmacological alternative to the commonly used genetic immunodeficient mice, allowing the use of genetically modified mice as hosts. In addition, it will permit the experimental analysis of the effects produced by human CB xenografts in the chronic PD murine model, with the final aim of using CB allografts as an option of cell therapy in PD patients.


Assuntos
Corpo Carotídeo/patologia , Terapia Baseada em Transplante de Células e Tecidos , Xenoenxertos/efeitos dos fármacos , Terapia de Imunossupressão , Transplante Heterólogo , Animais , Corpo Estriado/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Terapia de Imunossupressão/métodos , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...