Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234690

RESUMO

Due to the current concerns against opportunistic pathogens and the challenge of antimicrobial resistance worldwide, alternatives to control pathogen growth are required. In this sense, this work offers a new nanohybrid composed of zinc-layered hydroxide salt (Simonkolleite) and thymol for preventing bacterial growth. Materials were characterized with XRD diffraction, FTIR and UV-Vis spectra, SEM microscopy, and dynamic light scattering. It was confirmed that the Simonkolleite structure was obtained, and thymol was adsorbed on the hydroxide in a web-like manner, with a concentration of 0.863 mg thymol/mg of ZnLHS. Absorption kinetics was described with non-linear models, and a pseudo-second-order equation was the best fit. The antibacterial test was conducted against Escherichia coli O157:H7 and Staphylococcus aureus strains, producing inhibition halos of 21 and 24 mm, respectively, with a 10 mg/mL solution of thymol-ZnLHS. Moreover, biofilm formation of Pseudomonas aeruginosa inhibition was tested, with over 90% inhibition. Nanohybrids exhibited antioxidant activity with ABTS and DPPH evaluations, confirming the presence of the biomolecule in the inorganic matrix. These results can be used to develop a thymol protection vehicle for applications in food, pharmaceutics, odontology, or biomedical industries.


Assuntos
Antioxidantes , Timol , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biofilmes , Radicais Livres , Testes de Sensibilidade Microbiana , Timol/farmacologia , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...