Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem X ; 22: 101420, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746780

RESUMO

Mango (Mangifera indica) is a fruit highly consumed for its flavor and nutrient content. The mango peel is rich in compounds with biological functionality, such as antioxidant activity among others. The influence of microwave-assisted extraction variables on total phenol compounds (TPC) and antioxidant activity (TEAC) of natural extracts obtained from mango peel var. Tommy and Sugar were studied using a response surface methodology (RSM) and Artificial Neural Networks (ANN). TPC of mango peel extract var. Tommy was significantly influenced by time extraction (X1), solvent/plant ratio (X2) and concentration of ethanol (X3) and while mango peel extract var. Sugar was influenced by X2. TEAC by ABTS was significantly influenced by X3. Maximum of TPC (121.3 mg GAE / g of extract) and TEAC (1185.9 µmol Trolox/g extract) for mango peel extract var. Tommy were obtained at X1=23.9s, X2=12.6mL/gand X3=63.2%, and for mango peel extract var. Sugar, the maximum content of TPC (224.86 mg GAE/g extract) and TEAC (2117.7 µmol Trolox/g extract) were obtained at X1=40s, X2=10mL/g and X3=74.9%. The ANN model presented a higher predictive capacity than the RSM (RANN2>RRSM2,RMSEANN

2.
Foods ; 12(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761206

RESUMO

This study investigated the potential uses of discarded mango peel and seed parts by analyzing their water sorption behavior, hydration kinetics, and stability when converted into extract powders at pH 3 and 10. The results revealed that peel extracts had a higher water adsorption capacity compared with seed extracts due to differences in their composition. Peel extracts were primarily composed of carbohydrates (approximately 75%) with a low protein content, while seed extracts contained fewer carbohydrates (less than 30%) but higher levels of proteins (more than 30%) and lipids. The critical water content for maintaining the glassy state of peel extract powders during storage was found to be 0.025 and 0.032 g of water/g for extracts obtained at pH 3 and 10, respectively. In contrast, the Tg values of seed extracts remained relatively unchanged across different water content levels, suggesting that proteins and lipids inhibited the water's plasticizing effect in the solid matrix. These findings indicate that both mango waste fractions exhibit distinct hygroscopic behaviors, necessitating different approaches to processing and utilization. These extracts hold potential applications for various food products such as beverages, gels, sauces, or emulsions, contributing to the reduction in waste and the creation of value-added products from mango residues.

3.
Gels ; 9(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36826306

RESUMO

(1) Background: Starch is the main component of mango (Mangifera indica) kernel, making it an alternative to obtain an ingredient from a non-conventional source with potential application in food and other industrial applications; however, reports on the use of new extraction techniques for this material are scarce. The main objective of this research was to evaluate the effect of ultrasound-assisted extraction (UAE) on the yield, chemical, techno-functional, rheological, and pasting properties of starch isolated from a non-conventional source such as a mango kernel. (2) Methods: Different power sonication conditions (120, 300, and 480 W) and sonication time (10, 20, and 30 min) were evaluated along with a control treatment (extracted by the wet milling method). (3) Results: Ultrasound-assisted extraction increases starch yield, with the highest values (54%) at 480 W and 20 min. A significant increase in the amylose content, water-holding capacity, oil-holding capacity, solubility, and swelling power of ultrasonically extracted starches was observed. Similarly, mango kernel starch (MKS) exhibited interesting antioxidant properties. The sol-gel transition temperature and pasting parameters, such as the breakdown viscosity (BD) and the setback viscosity (SB), decreased with ultrasound application; (4) Conclusion: indicating that ultrasound caused changes in physical, chemical, techno-functional, rheological, and pasting properties, depending on the power and time of sonication, so it can be used as an alternative starch extraction and modification technique, for example, for potential application in thermally processed food products such as baked goods, canned foods, and frozen foods.

4.
Gels ; 8(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735698

RESUMO

Background: Hydrocolloids are ingredients used to improve the technological properties of products; currently, there is a growing demand from the food industry and consumers to use natural ingredients and reduce the environmental impact. Methods: This work evaluated the effect of pH on hydrocolloid extraction from the pulp, seed, and peel of mango (Mangifera indica) var. hilaza and their chemical, physicochemical, techno-functional, and structural properties. Results: The main component of the hydrocolloid was the carbohydrates for pulp (22.59%) and peel (24.05%), and the protein for seed (21.48%) was corroborated by NIR spectra and associated with the technological and functional properties. The solubility increases with the temperature presenting values higher than 75% at 80 °C; the swelling index was higher than 30%, while the water holding capacity was higher in samples with higher carbohydrate content (110−121%). Moreover, a higher content of total phenolic compounds (21.61 ± 0.39−51.77 ± 2.48 mg GAE/g) and antioxidant activity (≥193.82 µMol Trolox/g) was obtained. The pH of extraction changes the color parameters and microstructural properties. Conclusions: Novel ingredients from mango pulp, seed, and peel at different pH levels have technological and functional properties that are potential use in the food industry as an alternative to the development of microstructural products.

5.
Gels ; 8(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35448110

RESUMO

BACKGROUND: Natural ingredients have been employed to develop food products. METHODS: Hydrocolloids from butternut squash seeds (HBSSs) were extracted with water at pH 3, 7, and 10 and characterized bromatologically and rheologically; then these HBSSs were used to stabilize the dressing-type emulsion by evaluating its physicochemical, rheological, and microstructural properties. RESULTS: Hydrocolloids presented higher protein (from 20.43 to 39.39%) and carbohydrate (from 50.05 to 52.68%) content and rheological properties with a predominant elastic modulus. HBSSs extracted at pH 10 were used for the development of the dressing-type emulsion. The samples were stable during the storage period (15 days), with a good microstructural organization showing non-Newtonian fluid properties with shear-thinning behavior when the pseudoplasticity and the oil droplet size decreased with the addition of HBSS. CONCLUSIONS: Hydrocolloid constituents were detected surrounding the droplets of the emulsions, intensifying the effects of inner droplet interaction due to depletion events and a strong influence on the structure and physical stability. The hydrocolloids used to stabilize the dressing-type emulsions are additively promising in microstructured food design.

6.
Heliyon ; 7(8): e07795, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34458626

RESUMO

Eggplant (Solanum melongena) is an important vegetable of the Nightshade family with high demand due to its nutritional value and medicinal properties. The principal objective of this work was to develop and standardize a spread eggplant paste (SEP) with the addition of guar gum and evaluate its physicochemical, bromatological, sensory, and rheological characteristics. A two-factor factorial design with three levels was used for the formulation, evaluating the percentage of guar gum and oil. Flow curves in steady-state and small-amplitude oscillatory shear tests were performed to evaluate the rheological properties of the pastes. Sensorial analysis was performed using descriptive analysis. The standardized eggplant showed no signs of phase separation being stable during storage. Samples presented a non-Newtonian shear-thinning behavior described by Ostwald de-Waele model (R2 > 0.969). The products exhibit more elastic than viscous behavior, with a higher storage modulus than loss modulus in the evaluated frequency range, where the modules could be well described by a power function of the oscillatory frequency. The sensory evaluation revealed that the product color, odor, taste, and spreadability were acceptable, being an alternative for the transformation and agro-industrial use of eggplant for production chain development.

7.
J Sci Food Agric ; 101(15): 6186-6192, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34324201

RESUMO

Mango (Mangifera indica) has been recognized as a rich source of bioactive compounds with potential pharmaceutical and nutraceutical applications and has attracted increasing interest from research. Phytochemistry studies have demonstrated that phenolic compounds are one of the most important biologically active components of M. indica extracts. Ultrasound- and microwave-assisted extractions and supercritical fluids have been employed to obtain bioactive molecules, such as phenolic acids, terpenoids, carotenoids, and fatty acids. These phytochemicals exhibit antioxidant, antimicrobial, anti-inflammatory, and anticancer activity, and depending on the source (bark, leaves, seeds, flowers, or peel) and extraction method there will be differences in the structure and bioactivity. This review examines the bioactive compounds, extraction techniques, and biological function of different parts of M. indica of great importance as nutraceuticals and functional compounds with potential application as therapeutic agents and functional foods. © 2021 Society of Chemical Industry.


Assuntos
Mangifera/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Flores/química , Frutas/química , Alimento Funcional/análise , Folhas de Planta/química , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...