Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(6): 4403-4423, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35239352

RESUMO

We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.


Assuntos
Doenças Transmissíveis , Neoplasias , Descoberta de Drogas , Glucosefosfato Desidrogenase , Ensaios de Triagem em Larga Escala , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico
2.
Trends Pharmacol Sci ; 42(10): 829-844, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34389161

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) maintains redox balance in a variety of cell types and is essential for erythrocyte resistance to oxidative stress. G6PD deficiency, caused by mutations in the G6PD gene, is present in ~400 million people worldwide, and can cause acute hemolytic anemia. Currently, there are no therapeutics for G6PD deficiency. We discuss the role of G6PD in hemolytic and nonhemolytic disorders, treatment strategies attempted over the years, and potential reasons for their failure. We also discuss potential pharmacological pathways, including glutathione (GSH) metabolism, compensatory NADPH production routes, transcriptional upregulation of the G6PD gene, highlighting potential drug targets. The needs and opportunities described here may motivate the development of a therapeutic for hematological and other chronic diseases associated with G6PD deficiency.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Deficiência de Glucosefosfato Desidrogenase/genética , Glutationa/metabolismo , Humanos , Mutação , Oxirredução , Estresse Oxidativo
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468660

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common blood disorder, presenting multiple symptoms, including hemolytic anemia. It affects 400 million people worldwide, with more than 160 single mutations reported in G6PD. The most severe mutations (about 70) are classified as class I, leading to more than 90% loss of activity of the wild-type G6PD. The crystal structure of G6PD reveals these mutations are located away from the active site, concentrating around the noncatalytic NADP+-binding site and the dimer interface. However, the molecular mechanisms of class I mutant dysfunction have remained elusive, hindering the development of efficient therapies. To resolve this, we performed integral structural characterization of five G6PD mutants, including four class I mutants, associated with the noncatalytic NADP+ and dimerization, using crystallography, small-angle X-ray scattering (SAXS), cryogenic electron microscopy (cryo-EM), and biophysical analyses. Comparisons with the structure and properties of the wild-type enzyme, together with molecular dynamics simulations, bring forward a universal mechanism for this severe G6PD deficiency due to the class I mutations. We highlight the role of the noncatalytic NADP+-binding site that is crucial for stabilization and ordering two ß-strands in the dimer interface, which together communicate these distant structural aberrations to the active site through a network of additional interactions. This understanding elucidates potential paths for drug development targeting G6PD deficiency.


Assuntos
Coenzimas/química , Glucosefosfato Desidrogenase/química , Leucina/química , Mutação , NADP/química , Prolina/química , Sítios de Ligação , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/patologia , Humanos , Cinética , Leucina/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , NADP/metabolismo , Prolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...